
ECE 471 – Embedded Systems
Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

15 September 2016

http://web.eece.maine.edu/~vweaver

Announcements

• HW#3 will be posted today

1

What the OS gives you at start

• Registers

• Instruction pointer at beginning

• Stack

• command line arguments, aux, environment variables

• Large contiguous VM space

2

ARM Architecture

• 32-bit

• Load/Store

• Can be Big-Endian or Little-Endian (usually little)

• Fixed instruction width (32-bit, 16-bit THUMB)

(Thumb2 is variable)

• arm32 opcodes typically take three arguments

(Destination, Source, Source)

• Cannot access unaligned memory (optional newer chips)

• Status flag (many instructions can optionally set)

3

• Conditional execution

• Complicated addressing modes

• Many features optional (FPU [except in newer], PMU,

Vector instructions, Java instructions, etc.)

4

Registers

• Has 16 GP registers (more available in supervisor mode)

• r0 - r12 are general purpose

• r11 is sometimes the frame pointer (fp) [iOS uses r7]

• r13 is stack pointer (sp)

• r14 is link register (lr)

• r15 is program counter (pc)

reading r15 usually gives PC+8

• 1 status register (more in system mode).

NZCVQ (Negative, Zero, Carry, oVerflow, Saturate)

5

Low-Level ARM Linux Assembly

6

Linux C (ABI)

• Application Binary Interface

• The rules an executable needs to follow in order to talk

to other code/libraries on the system

• A software agreement, this is not enforced at all by

hardware

• r0-r3 are first 4 arguments/scratch (extra go on stack)

(caller saved)

7

• r0-r1 are return value

• r4-r11 are general purpose, callee saved

• r12-r15 are special

• Things are more complex than this. Passing arrays and

structs? 64-bit values? Floating point values? etc.

8

Kernel Programming ABIs

• OABI – “old” original ABI (arm). Being phased out.

slightly different syscall mechanism, different alignment

restrictions

• EABI – new “embedded” ABI (armel)

• hard float – EABI compiled with ARMv7 and VFP

(vector floating point) support (armhf). Raspberry Pi

(raspbian) is compiled for ARMv6 armhf.

9

System Calls (EABI)

• System call number in r7

• Arguments in r0 - r6

• Return value in r0 (-1 if error, errno in -4096 - 0)

• Call swi 0x0

• System call numbers can be found in

/usr/include/arm-linux-gnueabihf/asm/unistd.h

They are similar to the 32-bit x86 ones.

10

System Calls (OABI)

The previous implementation had the same system call

numbers, but instead of r7 the number was the argument

to swi. This was very slow, as there is no way to

determine that value without having the kernel backtrace

the callstack and disassemble the instruction.

11

Manpage

The easiest place to get system call documentation.

man open 2

Finds the documentation for “open”. The 2 means look

for system call documentation (which is type 2).

12

A first ARM assembly program: hello exit

.equ SYSCALL_EXIT , 1

.globl _start

_start:

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in r7

swi 0x0 @ and exit

13

hello exit example

Assembling/Linking using make, running, and checking the

output.

lecture6$ make hello_exit_arm

as -o hello_exit_arm.o hello_exit_arm.s

ld -o hello_exit_arm hello_exit_arm.o

lecture6$./hello_exit_arm

lecture6$ echo $?

5

14

Assembly

• @ is the comment character. # can be used on line

by itself but will confuse assembler if on line with code.

Can also use /* */

• Order is source, destination

• Constant value indicated by # or $

15

Let’s look at our executable

• ls -la ./hello exit arm

Check the size

• readelf -a ./hello exit arm

Look at the ELF executable layout

• objdump --disassemble-all ./hello exit arm

See the machine code we generated

• strace ./hello exit arm

Trace the system calls as they happen.

16

hello world example
.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

mov r0 ,# STDOUT /* stdout */

ldr r1 ,= hello

mov r2 ,#13 @ length

mov r7 ,# SYSCALL_WRITE

swi 0x0

Exit

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number in r7

swi 0x0 @ and exit

.data

hello: .ascii "Hello World !\n"

17

New things to note in hello world

• The fixed-length 32-bit ARM cannot hold a full 32-bit

immediate

• Therefore a 32-bit address cannot be loaded in a single

instruction

• In this case the “=” is used to request the address

be stored in a “literal” pool which can be reached by

PC-offset, with an extra layer of indirection.

18

ARM Assembly Review

19

Arithmetic Instructions

Operate on 32-bit integers. Most of these take optional s

to set status flag

adc v1 add with carry
add v1 add
rsb v1 reverse subtract (immediate - rX)
rsc v1 reverse subtract with carry
sbc v1 subtract with carry
sub v1 subtract

20

Register Manipulation

mov, movs v1 move register
mvn, mvns v1 move inverted

21

Loading Constants

• In general you can get a 12-bit immediate which is 8

bits of unsigned and 4-bits of even rotate (rotate by

2*value). mov r0, #45

• You can specify you want the assembler to try to make

the immediate for you: ldr r0,=0xff

ldr r0,=label

If it can’t make the immediate value, it will store in

nearby in a literal pool and do a memory read.

22

Extra Shift in ALU instructions

If second source is a register, can optionally shift:

• LSL – Logical shift left

• LSR – Logical shift right

• ASR – Arithmetic shift right

• ROR – Rotate Right (last bit into carry)

• RRX – Rotate Right with Extend

bit zero into C, C into bit 31 (33-bit rotate)

23

• Why no ASL?

• For example:

add r1, r2, r3, lsr #4

r1 = r2 + (r3>>4)

• Another example (what does this do):

add r1, r2, r2, lsl #2

24

Shift Instructions

Pseudo operations. Implemented via mov with shift on

arm32.

asr arith shift right
lsl logical shift left
lsr logical shift right
ror rors – rotate right
rorx rotate right extend: bit 0 into C, C into bit 31

25

Logic Instructions

and v1 bitwise and
bfc ?? bitfield clear, clear bits in reg
bfi ?? bitfield insert
bic v1 bitfield clear: and with negated value
clz v7 count leading zeros
eor v1 exclusive or (name shows 6502 heritage)
orn v6 or not
orr v1 bitwise or

26

Comparison Instructions

Updates status flag, no need for s

cmp v1 compare (subtract but discard result)
cmn v1 compare negative (add)
teq v1 tests if two values equal (xor) (preserves carry)
tst v1 test (and)

27

Control-Flow Instructions

Can use all of the condition code prefixes.

Branch to a label, which is +/- 32MB from PC

b v1 branch
bl v1 branch and link (return value stored in lr)
bx v4t branch to offset or reg, possible THUMB switch
blx v5 branch and link to register, with possible THUMB switch

mov pc,lr v1 return from a link

28

Prefixed instructions

Most instructions can be prefixed with condition codes:

EQ, NE (equal) Z==1/Z==0
MI, PL (minus/plus) N==1/N==0
HI, LS (unsigned higher/lower) C==1&Z==0/C==0|Z==1
GE, LT (greaterequal/lessthan) N==V/N!=V
GT, LE (greaterthan, lessthan) N==V&Z==0/N!=V|Z==1

CS,HS, CC,LO (carry set,higher or same/clear) C==1,C==0
VS, VC (overflow set / clear) V==1,V==0

AL (always) (this is the default)

29

Setting Flags

• add r1,r2,r3

• adds r1,r2,r3 – set condition flag

• addeqs r1,r2,r3 – set condition flag and prefix

compiler and disassembler like addseq, GNU as doesn’t?

30

Conditional Execution

if (x == 1)

a+=2;

else

b-=2;

cmp r1, #5

addeq r2,r2,#2

subne r3,r3,#2

31

Load/Store Instructions

ldr v1 load register
ldrb v1 load register byte
ldrd v5 load double, into consecutive registers (Rd even)
ldrh v1 load register halfword, zero extends
ldrsb v1 load register signed byte, sign-extends
ldrsh v1 load register halfword, sign-extends
str v1 store register

strb v1 store byte
strd v5 store double
strh v1 store halfword

32

Addressing Modes

• ldrb r1, [r2] @ register

• ldrb r1, [r2,#20] @ register/offset

• ldrb r1, [r2,+r3] @ register + register

• ldrb r1, [r2,-r3] @ register - register

• ldrb r1, [r2,r3, LSL #2] @ register +/- register,

shift

33

• ldrb r1, [r2, #20]! @ pre-index. Load from r2+20

then write back

• ldrb r1, [r2, r3]! @ pre-index. register

• ldrb r1, [r2, r3, LSL #4]! @ pre-index. shift

• ldrb r1, [r2],#+1 @ post-index. load, then add value

to r2

• ldrb r1, [r2],r3 @ post-index register

• ldrb r1, [r2],r3, LSL #4 @ post-index shift

34

Why some of these?

• ldrb r1, [r2,#20] @ register/offset

Useful for structs in C (i.e. something.else=4;)

• ldrb r1, [r2,r3, LSL #2] @ register +/- register,

shift

Useful for indexing arrays of integers (a[5]=4;)

35

ARM Instruction Set Encodings

• ARM – 32 bit encoding

• THUMB – 16 bit encoding

• THUMB-2 – THUMB extended with 32-bit instructions

◦ STM32L only has THUMB2

◦ Original Raspberry Pis do not have THUMB2

◦ Raspberry Pi 2 does have THUMB2

• THUMB-EE – some extensions for running in JIT

runtime

• AARCH64 – 64 bit. Relatively new.

36

Recall the ARM32 encoding

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

37

THUMB

• Most instructions length 16-bit (a few 32-bit)

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• No prefix/conditional execution

• Only two arguments to opcodes

(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

38

• Limited addressing modes: [rn,rm], [rn,#imm],

[pc|sp,#imm]

• No shift parameter ALU instructions

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

• new push/pop instructions (subset of ldm/stm), neg (to

negate), asr,lsl,lsr,ror, bic (logic bit clear)

39

Calling THUMB

• We’ll get more into this next time, but for the HW just

know that to call into a THUMB function you need to

use blx rather than just the plain bl (branch and link)

instruction

40

