
ECE 471 – Embedded Systems
Lecture 7

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

20 September 2016

http://web.eece.maine.edu/~vweaver

Announcements

• How is HW#3 going?

1

HW2 Review

• Everyone seems to be accessing the Pi OK

If UK keyboard/etc run raspi-config

One benefit of a pi, is lots of people using it so google

very helpful.

• Be sure to follow directions!

• Most C code OK.

Be sure if it says print 20 lines that you do, not 21.

Colors seem not to be a problem.

2

• more info on ls. Looking for man. “info” or ls --help

• ls -a shows hidden files. Hidden files on UNIX

• Linker, ld.

You can use “gcc” to link, but it is calling the linker

(and also the assembler) behind your back.

chmod +x does make appear executable, but if file isn’t

an ELF file it won’t do what you think it might. (go

over filesystem bits?)

3

HW3 Notes

• Asking for disassembly?

• Confusing code. Reverse engineering experience. Block

of code from one of my older projects when I wasn’t

quite as good at ARM assembly.

• Just the print number code, the parts with no comments.

No need to explain what the divby10 is doing.

• What does .lcomm do? Reserves region in the BSS.

• Mention strace to see the syscalls

• Can disassemble code with objdump --disassemble-all

4

• gdb debugger

◦ gdb ./hello world

◦ run – to run program

◦ bt – show backtrace

◦ disassem – disassemble

◦ info regis – show register values

◦ More advanced features like single-step, breakpoint,

etc. also available.

5

Things missed last time

• How does kernel return a value? r0. -1 if error. Errno in

-4096 to -2

• .lcomm reserves room on BSS

6

Extra Shift in ALU instructions

If second source is a register, can optionally shift:

• LSL – Logical shift left

• LSR – Logical shift right

• ASR – Arithmetic shift right

• ROR – Rotate Right (last bit into carry)

• RRX – Rotate Right with Extend

bit zero into C, C into bit 31 (33-bit rotate)

7

• Why no ASL?

• shift pseudo instructions

lsr r0, #3 is same as mov r0,r0 LSR #3

• For example:

add r1, r2, r3, lsr #4

r1 = r2 + (r3>>4)

• Another example (what does this do):

add r1, r2, r2, lsl #2

8

Multiply Instructions

Fast multipliers are optional

For 64-bit results,

mla v2 multiply two registers, add in a third (4 arguments)
mul v2 multiply two registers, only least sig 32bit saved

smlal v3M 32x32+64 = 64-bit (result and add source, reg pair rdhi,rdlo)
smull v3M 32x32 = 64-bit
umlal v3M unsigned 32x32+64 = 64-bit
umull v3M unsigned 32x32=64-bit

9

Divide Instructions

• On some machines it’s just not there. Original Pi. Why?

• What do you do if you want to divide?

• Shift and subtract (long division)

• Multiply by reciprocal.

10

Load/Store multiple (stack?)

In general, no interrupt during instruction so long

instruction can be bad in embedded

Some of these have been deprecated on newer processors

• ldm – load multiple memory locations into consecutive

registers

• stm – store multiple, can be used like a PUSH instruction

• push and pop are thumb equivalent

11

Can have address mode and ! (update source):

• IA – increment after (start at Rn)

• IB – increment before (start at Rn+4)

• DA – decrement after

• DB – decrement before

Can have empty/full. Full means SP points to a used

location, Empty means it is empty:

• FA – Full ascending

12

• FD – Full descending

• EA – Empty ascending

• ED – Empty descending

Recent machines use the ”ARM-Thumb Proc Call

Standard” which says a stack is Full/Descending, so use

LDMFD/STMFD.

What does stm SP!, {r0,lr} then ldm SP!,

{r0,PC,pc} do?

13

System Instructions

• svc, swi – software interrupt

takes immediate, but ignored.

• mrs, msr – copy to/from status register. use to clear

interrupts? Can only set flags from userspace

• cdp – perform coprocessor operation

• mrc, mcr – move data to/from coprocessor

• ldc, stc – load/store to coprocessor from memory

14

Co-processor 15 is the system control coprocessor and is

used to configure the processor. Co-processor 14 is the

debugger 11 is double-precision floating point 10 is single-

precision fp as well as VFP/SIMD control 0-7 vendor

specific

15

Other Instructions

• swp – atomic swap value between register and memory

(deprecated armv7)

• ldrex/strex – atomic load/store (armv6)

• wfe/sev – armv7 low-power spinlocks

• pli/pld – preload instructions/data

• dmb/dsb – memory barriers

16

Pseudo-Instructions

adr add immediate to PC, store address in reg
nop no-operation

17

Fancy ARMv6

• mla – multiply/accumulate (armv6)

• mls – multiply and subtract

• pkh – pack halfword (armv6)

• qadd, qsub, etc. – saturating add/sub (armv6)

• rbit – reverse bit order (armv6)

• rbyte – reverse byte order (armv6)

• rev16, revsh – reverse halfwords (armv6)

• sadd16 – do two 16-bit signed adds (armv6)

• sadd8 – do 4 8-bit signed adds (armv6)

18

• sasx – (armv6)

• sbfx – signed bit field extract (armv6)

• sdiv – signed divide (only armv7-R)

• udiv – unsigned divide (armv7-R only)

• sel – select bytes based on flag (armv6)

• sm* – signed multiply/accumulate

• setend – set endianess (armv6)

• sxtb – sign extend byte (armv6)

• tbb – table branch byte, jump table (armv6)

• teq – test equivalence (armv6)

• u* – unsigned partial word instructions

19

Floating Point

ARM floating point varies and is often optional.

• various versions of vector floating point unit

• vfp3 has 16 or 32 64-bit registers

• Advanced SIMD – reuses vfp registers

Can see as 16 128-bit regs q0-q15 or 32 64-bit d0-d31

and 32 32-bit s0-s31

• SIMD supports integer, also 16-bit?

• Polynomial?

• FPSCR register (flags)

20

Setting Flags

• add r1,r2,r3

• adds r1,r2,r3 – set condition flag

• addeqs r1,r2,r3 – set condition flag and prefix

compiler and disassembler like addseq, GNU as doesn’t?

21

Conditional Execution

i f (x == 5)

a+=2;

e l s e

b−=2;

cmp r1 , #5

bne e l s e

add r2 , r2 ,#2

b done

e l s e :

sub r3 , r3 ,#2

22

done :

cmp r1, #5

addeq r2,r2,#2

subne r3,r3,#2

23

ARM Instruction Set Encodings

• ARM – 32 bit encoding

• THUMB – 16 bit encoding

• THUMB-2 – THUMB extended with 32-bit instructions

◦ STM32L only has THUMB2

◦ Original Raspberry Pis do not have THUMB2

◦ Raspberry Pi 2/3 does have THUMB2

• THUMB-EE – extensions for running in JIT runtime

• AARCH64 – 64 bit. Relatively new. Completely different

from ARM32

24

Recall the ARM32 encoding

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

25

THUMB

• Most instructions length 16-bit (a few 32-bit)

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• No prefix/conditional execution

• Only two arguments to opcodes

(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

26

• Limited addressing modes: [rn,rm], [rn,#imm],

[pc|sp,#imm]

• No shift parameter ALU instructions

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

• new push/pop instructions (subset of ldm/stm), neg (to

negate), asr,lsl,lsr,ror, bic (logic bit clear)

27

THUMB/ARM interworking

• See print string armthumb.s

• BX/BLX instruction to switch mode.

If target is a label, always switchmode

If target is a register, low bit of 1 means THUMB, 0

means ARM

• Can also switch modes with ldrm, ldm, or pop with PC

as a destination

(on armv7 can enter with ALU op with PC destination)

• Can use .thumb directive, .arm for 32-bit.

28

THUMB-2

• Extension of THUMB to have both 16-bit and 32-bit

instructions

• 32-bit instructions not standard 32-bit ARM instructions.

It’s a new encoding that allows an instruction to be 32-

bit if needed.

• Most 32-bit ARM instructions have 32-bit THUMB-2

equivalents except ones that use conditional execution.

The it instruction was added to handle this.

• rsc (reverse subtract with carry) removed

29

• Shifts in ALU instructions are by constant, cannot shift

by register like in arm32

• THUMB-2 code can assemble to either ARM-32 or

THUMB2

The assembly language is compatible.

Common code can be written and output changed at

time of assembly.

• Instructions have “wide” and “narrow” encoding.

Can force this (add.w vs add.n).

• Need to properly indicate “s” (set flags).

On regular THUMB this is assumed.

30

THUMB-2 Coding

• See test thumb2.s

• Use .syntax unified at beginning of code

• Use .arm or .thumb to specify mode

31

New THUMB-2 Instructions

• BFI – bit field insert

• RBIT – reverse bits

• movw/movt – 16 bit immediate loads

• TB – table branch

• IT (if/then)

• cbz – compare and branch if zero; only jumps forward

32

Thumb-2 12-bit immediates

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

0100 -- 1bcdedfh 00000000 00000000 00000000

...

1111 -- 00000000 00000000 00000001 bcdefgh0

33

Compiler

• Original RASPBERRY PI DOES NOT SUPPORT

THUMB2

• gcc -S hello world.c

By default is arm32

• gcc -S -march=armv5t -mthumb hello world.c

Creates THUMB (won’t work on Raspberry Pi due to

HARDFP arch)

• -mthumb -march=armv7-a Creates THUMB2

34

IT (If/Then) Instruction

• Allows limited conditional execution in THUMB-2 mode.

• The directive is optional (and ignored in ARM32)

the assembler can (in-theory) auto-generate the IT

instruction

• Limit of 4 instructions

35

Example Code

it cc

addcc r1,r2

itete cc

addcc r1,r2

addcs r1,r2

addcc r1,r2

addcs r1,r2

36

ll Example Code

ittt cs @ If CS Then Next plus CS for next 3

discrete_char:

ldrbcs r4,[r3] @ load a byte

addcs r3,#1 @ increment pointer

movcs r6,#1 @ we set r6 to one so byte

bcs.n store_byte @ and store it

offset_length:

37

AARCH64

• 32-bit fixed instruction encoding

• 31 64-bit GP registers (x0-x30), zero register (x30)

• PC is not a GP register

• only branches conditional

• no load/store multiple

• No thumb

38

Code Density

• Overview from my ll ICCD’09 paper

• Show code density for variety of architectures, recently

added Thumb-2 support.

• Shows overall size, though not a fair comparison due to

operating system differences on non-Linux machines

39

Code Density – overall

ia
64

al
ph

a

R
iS

C

pa
-ri

sc

sp
ar

c

m
ic
ro

bl
az

e
m

ip
s

m
88

k

ar
m

.e
ab

i

Pow
er

PC
65

02

ar
m

64
s3

90

x8
6_

64

x8
6_

x3
2

sh
3

m
68

k
i3
86 va

x

TH
U
M

B

Thu
m

b-
2

av
r3

2

cr
is
v3

2
z8

0

pd
p-

11
80

86
0

512

1024

1536

2048

2560

3072

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

40

lzss compression

• Printing routine uses lzss compression

• Might be more representative of potential code density

41

Code Density – lzss

R
iS

C
ia
64

al
ph

a

pa
-ri

sc
m

ip
s

sp
ar

c

m
ic
ro

bl
az

e
65

02

m
88

k
s3

90

ar
m

.e
ab

i

Pow
er

PC

pd
p-

11 z8
0

ar
m

64

m
68

k

av
r3

2
sh

3

TH
U
M

B

Thu
m

b-
2

va
x

x8
6_

64

x8
6_

x3
2

cr
is
v3

2
i3
86

80
86

0

64

128

192

256

320

384

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

42

Put string example

.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

ldr r1 ,= hello

bl print_string @ Print Hello World

ldr r1 ,= mystery

bl print_string @

ldr r1 ,= goodbye

bl print_string /* Print Goodbye */

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in eax

swi 0x0 @ and exit

43

#====================

print string

#====================

Null -terminated string to print pointed to by r1

r1 is trashed by this routine

print_string:

push {r0 ,r2 ,r7 ,r10} @ Save r0 ,r2 ,r7 ,r10 on stack

mov r2 ,#0 @ Clear Count

count_loop:

add r2 ,r2 ,#1 @ increment count

ldrb r10 ,[r1 ,r2] @ load byte from address r1+r2

cmp r10 ,#0 @ Compare against 0

bne count_loop @ if not 0, loop

mov r0 ,# STDOUT @ Print to stdout

mov r7 ,# SYSCALL_WRITE @ Load syscall number

swi 0x0 @ System call

pop {r0 ,r2 ,r7 ,r10} @ pop r0 ,r2 ,r7 ,r10 from stack

mov pc ,lr @ Return to address stored in

44

@ Link register

.data

hello: .string "Hello World !\n" @ includes null at end

mystery: .byte 63,0x3f ,63,10,0 @ mystery string

goodbye: .string "Goodbye !\n" @ includes null at end

45

