
ECE 471 – Embedded Systems
Lecture 8

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

22 September 2016

http://web.eece.maine.edu/~vweaver


Announcements

• HW#4 will be posted soon

• Will require an LED, a breadboard, and some jumper

wires. I handed out some GPIO wires in class.

1



Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards

in ECE271.

• Compile code

• Prepare for upload (hexbin?)

• Upload into FLASH

• Boots to offset

2



• Setup, flat memory (usually), stack at top, code near

bottom, IRQ vectors

• Handle Interrupts

• Must do I/O directly (no drivers)

Although if lucky, can find existing code.

• Code is specific to the hardware you are on

3



Instead, one can use an Operating System

4



Why Use an Operating System?

• Provides Layers of Abstraction

– Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

– Abstract software: with VM get linear address space,

same system calls on all systems

– Abstraction comes at a cost. Higher overhead,

unknown timing

5



• Multi-tasking / Multi-user

• Security, permissions (Linus dial out onto /dev/hda)

• Common code in kernel and libraries, no need to re-

invent

6



What’s included with an OS

• kernel / drivers – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included?

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.

7



Brief Overview of the Raspberry Pi Board

Model B

Camera

Pin1 Pin2

Composite

Audio

HDMI

Power

Pin25 Pin26

Ethernet

USB

Model B+

Audio/Video

Pin1 Pin2

Ethernet

USB USB

Power

HDMI

8



Rasp-pi Header

• Model B has 17 GPIOs (out of 26 pins), B+ has 9 more

(out of 40)

• 3.3V signaling logic. Need level shifter if want 5V or

1.8V

• Linux by default configures some for other purposes

(serial, i2c, SPI)

9



Rasp-pi Header
3.3V 1 2 5V

GPIO2 (SDA) 3 4 5V
GPIO3 (SCL) 5 6 GND

GPIO4 (1-wire) 7 8 GPIO14 (UART TXD)
GND 9 10 GPIO15 (UART RXD)

GPIO17 11 12 GPIO18 (PCM CLK)
GPIO27 13 14 GND
GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24
GPIO10 (MOSI) 19 20 GND

GPIO9 (MISO) 21 22 GPIO25
GPIO11 (SCLK) 23 24 GPIO8 (CE0)

GND 25 26 GPIO7 (CE1)

ID SD (EEPROM) 27 28 ID SC (EEPROM)
GPIO5 29 30 GND
GPIO6 31 32 GPIO12

GPIO13 33 34 GND
GPIO19 35 36 GPIO16
GPIO26 37 38 GPIO20

GND 39 40 GPIO21

10



How you enable GPIO on STM32L

A lot of read/modify/write instructions to read current

register values and then to shift/mask to write out updated

bitfields.

• Enable GPIO Clock

• Set output mode for GPIO.

• Set GPIO type.

• Set pin clock speed.

• Set pin pull-up/pull-down

• Set or clear GPIO pin.

11



“Bare Metal” on BCM2835 (Rasp-pi)

• Documented in BCM2835 ARM Peripherals Manual

• 53 GPIOs (not all available on board)

• Can use Wiring-Pi or libbcm2835 if you need speed

• Similar to how done on STM32L... but we have an

operating system

12



Letting the OS handle it for you

13



Linux GPIO interface

• Documentation/gpio/sysfs.txt

• sysfs and string based

14



A few low-level Linux Coding Instructions

15



Enable a GPIO for use

To enable GPIO 17:

write “17” to /sys/class/gpio/export

To disable GPIO 17:

write “17” to /sys/class/gpio/unexport

char buffer [10];

fd=open("/sys/class/gpio/export",O_WRONLY );

if (fd <0) fprintf(stderr ,"\tError enabling\n");

strcpy(buffer ,"17");

write(fd ,buffer ,2);

close(fd);

16



Set GPIO Direction

To make GPIO 17 an input:

write “in” to /sys/class/gpio/gpio17/direction

To make GPIO 17 an output:

write “out” to /sys/class/gpio/gpio17/direction

fd=open("/sys/class/gpio/gpio17/direction",O_WRONLY );

if (fd <0) fprintf(stderr ,"Error!\n");

write(fd ,"in" ,2);

close(fd);

17



Write GPIO Value

To write value of GPIO 17:

write /sys/class/gpio/gpio17/value

fd=open("/sys/class/gpio/gpio17/value",O_WRONLY );

if (fd <0) fprintf(stderr ,"Error opening !\n");

write(fd ,"1" ,1);

close(fd);

18



Read GPIO Value

To read value of GPIO 17:

read /sys/class/gpio/gpio17/value

char buffer [16];

fd=open("/sys/class/gpio/gpio17/value",O_RDONLY );

if (fd <0) fprintf(stderr ,"Error opening !\n");

read(fd,buffer ,16);

printf("Read %c from GPIO17\n",buffer [0]);

close(fd);

Note: the value you read is ASCII, not an integer.

Also Note, if reading and you do not close after read you will have to rewind using

lseek(fd,0,SEEK SET); after your read.

19



Delay

• Busy delay (like in 271).

for(i=0;i<1000000;i++);

Harder to do in C. Why?

Compiler optimizes away.

• usleep() puts process to sleep for a number of

microseconds. But can have issues if want exact delay.

Why? OS potentially context switches every 100ms.

• Other ways to implement: Set up PWM? Timers?

20



Using fopen instead?

• Need to fflush() after writes (linefeed not enough?)

• Need to frewind() after reads?

21



Waiting for Input

• Busy loop. Bad, burns CPU / power

• usleep() in loop. Can delay response time.

• Interrupt when ready! poll()

22



GPIO Interrupts on Linux

May need a recent version of Raspbian.

First write ”rising”, ”falling”, or ”both” to

/sys/class/gpio/gpio17/edge.

Then open and poll /sys/class/gpio/gpio17/value.
struct pollfd fds;

int result;

fd=open("/sys/class/gpio/gpio18/value",O_RDONLY );

fds.fd=fd;

fds.events=POLLPRI|POLLERR;

while (1) {

result=poll(&fds ,1, -1);

if (result <0) printf("Error!\n");

lseek(fd ,0,SEEK_SET );

read(fd,buffer ,1); }

23



Debouncing!

• Pull-up / Pull-down resistor. Why?

• Noisy switches, have to debounce

• Manual, no built-in debounce like on STM32L

24


