
ECE 471 – Embedded Systems
Lecture 12

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 October 2016

http://www.eece.maine.edu/~vweaver


Announcements

• Homework #5 was due

• Homework #6 will be posted today

• Midterms will be graded for next class

• Memsys update.

• UM Talk.

• In computer engineering typically you come up with some

1



theoretical idea, then come up with contrived theoretical

numbers that back it up. Doing *actual* measurements

is considered something novel somehow (by some people,

others reject it as too boring).

• If you are a Junior and are interested in doing power

measurement research over the summer, look into

applying CUGR (now) or REU (March)

2



Homework 6 notes

• Handout should cover most of it

• bit-banging i2c

• Use the sysfs gpio interface and driving the SDA and

SCL lines manually to talk to the 4x7 LED display

• Still easier than full bitbang, where you’d have to write

to various i/o addresses

• A lot of the code is provided for you, follow the directions

• How do you set SDA low?

Set to output, write a ’0’

3



• How do you set SDA high?

Do not write a ’1’ !

Open collector, need to let it float.

Set to ’input’ works.

• Static in C?

• Why not bitbang everything? A pain. Hardware does it

for you. Hardware even does more, can often buffer or

DMA, timing more exact.

• Why might you want to bitbang i2c? Only have one i2c

bus? Or no i2c bus, only GPIOs? kernel has bitbang

driver

4



Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use

5



it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.

6



Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where

7



it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide

8



Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel

9



to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.

10



Device Firmware

• Devices are their own embedded systems these days.

May even have full CPUs, etc.

• Need to run code. Firmware.

• In ROM? Or upgradable? Why might you want to

upgrade? (bug fixes, economy, etc.)

• Talk about recent USB firmware malware

11



Firmware

Provides booting, configuration/setup, sometimes provides

rudimentary hardware access routines.

Kernel developers like to complain about firmware authors.

Often mysterious bugs, only tested under Windows, etc.

Old days things were simple, just external ROM and

CPU jump to the address.

Old old days (Altair, etc) no ROM, toggled bootloader via

switches

12



• BIOS – legacy 16-bit interface on x86 machines

• UEFI – Unified Extensible Firmware Interface

ia64, x86, ARM. From Intel. Replaces BIOS

• OpenFirmware – old macs, SPARC

• LinuxBIOS

13



Bootloaders on ARM

• uBoot – Universal Bootloader, for ARM and under

embedded systems

• So both BIOS and bootloader like minimal OSes

14



Raspberry Pi Booting

• Unusual

• Small amount of firmware on SoC

• ARM 1176 brought up inactive (in reset)

• Videocore loads first stage from ROM

• This reads bootcode.bin from fat partition on SD card

into L2 cache. It’s actually a RTOS (real time OS in

own right “ThreadX”)

15



• This runs on videocard, enables SDRAM, then loads

start.elf

• This initializes things, the loads and boots Linux

kernel.img. (also reads some config files there first)

16



More booting

• Most other ARM devices, ARM chip runs first-stage

boot loader (often MLO) and second-stage (uboot)

• FAT partition

Why FAT? (Simple, Low-memory, Works on most

machines, In theory no patents despite MS’s best

attempts (see exfat))

The boot firmware (burned into the CPU) is smart

enough to mount a FAT partition

17



Booting Linux

• Bootloader jumps into OS entry point

• Set Up Virtual Memory

• Setup Interrupts

• Detect Hardware / Install Device Drivers

• Mount filesystems

• Pass control to userspace / call init

18



• Run init scripts

• rc boot scripts, /etc/rc.local

Start servers, or “daemons” as they’re called under

Linux.

• fork()/exec(), run login, run shell

19



How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps

20



to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

21



Viewing Processes

• You can use top to see what processes are currently

running

• Also ps but that’s a bit harder to use.

22


