
ECE 471 – Embedded Systems
Lecture 13

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

18 October 2016

http://www.eece.maine.edu/~vweaver


Announcements

• How is HW#6 going?

1



Midterm Review

1. Embedded Systems

Note, “full OS running” does not mean it’s not an

embedded system

Digress on supercomputer

2. Operating Systems

(a) Benefit of OS: abstraction, portability

user friendly? easier to program? libraries? maybe self

hosted?

2



(b) Drawback of OS: overhead, not all features available

(c) Themostat: can you write an OS in 8kb? low power–

not necessarily. more expensive to have OS: why?

3



Homework 5 Review

• C Coding Hints:

Use the pre-processor (Pound defines) when odd

constants are involved. Code is much easier if you

have something like HT16K33 REGISTER DIMMING than

0xE0.

• Error checking redux.

If can’t handle an error, exit, don’t just print a message

and charge through.

I only expect reasonable error checking. In theory every

4



printf can fail, but people don’t check for error on every

call. Important things like file opening and memory

allocations you must check and do something.

• 7a. GPU is used on boot on Pi. This is unusual, for

the GPU to handle the booting. It’s *not* unusual for

an embedded board to have a GPU. It’s not necessarily

unusual to have off-chip SD-card storage.

• 7b. fat32 is used primarily because it is simple and widely

used, as well as mostly patent free. Simple enough for

firmware/bootloader to read (CPU itself cannot do it

5



in hardware, there is some software involved). You

could use implement it yourself in a HW assignment

(well, enough to load one file from the root dir). Not

so much NTFS or HFSplus or ext4, let alone btrfs.

fat/fat12/fat16/vfat/fat32/exfat

”manages space effectively” – no

• 7c. What I was looking for was the bootloader, which is

the chunk of code responsible for loading the kernel into

memory.

• 7d. Why not scan? Because they are reserved.

6



• Command line? diff and wc?

7



Context Switching

• OS provides the illusion of single-user system despite

many processes running, by switching between them

quickly.

• Switch rate in general 100Hz to 1000Hz, but can vary

(and is configurable under Linux). Faster has high

overhead but better responsiveness (guis, etc). Slower

not good for interactive workloads but better for long-

running batch jobs.

8



• You need to save register state. Can be slow, especially

with lots of registers.

• When does context switch happen? Periodic timer

interrupt. Certain syscalls (yield, sleep) when a process

gives up its timeslice. When waiting on I/O

• Who decided who gets to run next? The scheduler.

• The scheduler is complex.

• Fair scheduling? If two users each have a process, who

runs when? If one has 99 and one has 1, which runs

9



next?

• Linux scheduler was O(N). Then O(1). Now O(log N).

Why not O(N 3)

10



Real Time Constraints

What are real time constraints?

• Time deadlines that hardware needs to respond in.

• Goal not performance, but response time

11



Types of Real Time Constraints

• Hard – miss deadline, total failure (people die?)

Antilock brakes?

• Firm – result no longer useful after deadline missed

lost frames in video, missed frames in video game

• Soft – results gradually less useful as deadline passes.

Caps lock LED coming on?

12



Constraints depend on the Application

Can almost always come up with a scenario where a soft

constraint could become hard.

For example: Unlocking a car door taking an extra

second? Not hard real-time, except maybe if your car is

about to crash and you need to escape quickly.

13



What can cause problems with real-time?

Sources of “Jitter”

• Interrupts. Taking too long to run; being disabled (cli)

• Unpredictable nature of modern CPUs. Caches, branch-

predictors, etc.

• Operating system. Scheduler. Context-switching.

• Dynamic memory allocation, garbage collection.

14



• Slow/unpredictable hardware (hard disks, network

access)

15



Determining worst case behavior.

• Hard on modern processors. Easier on stm32l than on

raspberry pi running Linux

• STM32L is in-order. Program in assembly. Turn

off interrupts. You know exactly when everything is

happening.

• Pi, with OS. Can you disable interrupts?

16



Common OS strategies

• Event driven – have priorities, highest priority pre-empts

lower

• Time sharing – only switch at regular clock time, round-

robin

17



Scheduler example

• Static: Rate Monotonic Scheduling – shortest job goes

first

• Dynamic: Earliest deadline first

• Three tasks come in. a. finish in 10s, 4 long. b. finish

in 3, 2 long, c. finish in 5, 1 long

• In order they arrive, aaaabbccc bad for everyone

• RMS: cbbbaaaa works

18



• EDF: bbbcaaaa also works.

• Lots of information on various scheduling algorithms

19



Priority Inversion Example

• Task priority 3 takes lock on some piece of hardware

• Task 2 fires up and pre-empts task 3

• Task 1 fires up and pre-empts task 1, but it needs same

HW as task 3. Waits for it. It will never get free.

• Space probes have had issues due to this.

20



Real Time OS

Who uses realtime?

• Timing critical situations. Cars, medical equipment,

space probes, etc.

• Industrial automation. SCADA. Stuxnet.

• Musicians, important to have low-latency when recording

• High-speed trading

21



PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

22



Linux PREEMPT Kernel

• What latencies can you get? 10-30us on some x86

machines

• Depends on firmware; SMI interrupts (secret system

mode, can’t be blocked, emulate USB and like)’ Slow

hardware; CPU frequency scaling; nohz

• Special patches, recompile kernel

• mlockall() memory in, start threads and touch at

beginning, avoid all causes of pagefaults.

23



Co-operative real-time Linux

• Xenomai

• Linux run as side process, sort of like hypervisor

24



Other RTOSes

• Vxworks

• Neutrino

• Free RTOS

• Windows CE

25


