
ECE471: Embedded Systems – Homework 8
1-wire bus

Due: Friday, 3 November 2017, 1:00pm

1. Use your Raspberry Pi for this homework.
You will need a DS18B20 1-wire temperature probe (looks like a transistor) and pull-up resistor as
handed out in class. If you missed class, you can stop by my office to pick these up.

You can view the datasheet for the DS18B20:
http://web.eece.maine.edu/~vweaver/classes/ece471_2014f/datasheets/DS18B20.pdf

Camera

Pin1 Pin2

Composite

Audio

HDMI

Power

Pin25 Pin26

Ethernet

USB

Audio/Video

Pin1 Pin2

Ethernet

USB USB

Power

HDMI

Figure 1: Location of header on Raspberry Pi Model B and B+/2/3

DS18B20

GND 3.3VData

Figure 2: DS18B20 Pinout

2. Get the DS18B20 temperature readings over 1-wire (6 points)

First wire up the 1-wire device to the Raspberry Pi. You can use Figure 1 and Table 1 for guidance, as
well as Figure 2.

http://web.eece.maine.edu/~vweaver/classes/ece471_2014f/datasheets/DS18B20.pdf


Table 1: Raspberry Pi Header Pinout
3.3V 1 2 5V

GPIO2 (SDA) 3 4 5V
GPIO3 (SCL) 5 6 GND

GPIO4 (1-wire) 7 8 GPIO14 (UART_TXD)
GND 9 10 GPIO15 (UART_RXD)

GPIO17 11 12 GPIO18 (PCM_CLK)
GPIO27 13 14 GND
GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24
GPIO10 (MOSI) 19 20 GND
GPIO9 (MISO) 21 22 GPIO25

GPIO11 (SCLK) 23 24 GPIO8 (CE0)
GND 25 26 GPIO7 (CE1)

ID_SD (EEPROM) 27 28 ID_SC (EEPROM)
GPIO5 29 30 GND
GPIO6 31 32 GPIO12

GPIO13 33 34 GND
GPIO19 35 36 GPIO16
GPIO26 37 38 GPIO20

GND 39 40 GPIO21

(a) Put the DS18B20 device on a breadboard:
Connect 3.3V on the Pi to 3.3V on the DS18B20.
Connect GND on the Pi to GND on the DS18B20.
Connect GPIO4 on the Pi to Data on the DS18B20.
Connect GPIO4 to 3.3V via the pullup resistor.

(b) Enable 1-wire support in Linux running on your Pi.
It should be possible to do this by running raspi-config, Advanced Options, 1-wire, enable,
and then rebooting.
If that somehow doesn’t work you may need to enable the 1-wire gpio and 1-wire thermal drivers
manually:
sudo modprobe w1-gpio
sudo modprobe w1-therm

(c) Modify the temp_1wire.c file to read values from the DS18B20 and print them to the screen.
See the classnotes for more details.

• Find the unique-id for your DS18B20 device.
Look for a directory under /sys/bus/w1/devices/ that looks something like
28-000005aaf7ed.

• Modify the provided read_temp() routine so it returns the temperature in degrees C as a
floating point value.

– Open /sys/bus/w1/devices/28-000005aaf7ed/w1-slave

2



(replacing the unique ID with your own) for reading.
– Read the file. There are two values you want to grab, the YES value at the end of the

first line and the t=24125 value from the end of the second line.
One way to do this is to use fscanf() but you can use any method that works (there
are many).
To use fscanf of a string, do something like
char string1[256],string2[256];
FILE *fff;
fff=fopen("filename","r");
fscanf(fff,"%s %s",string1,string2);

HINT: If you want to read a string but not actually store the value (in effect, skipping a
value from the stream) you can do something like:
fscanf(fff,"%*s %s",string1);

The asterisk there means to read the value but not store it anywhere.
– Read the YES/NO value from the end of the first line and check if the value is YES.

If it isn’t, print an error and return an invalid temperature value. (HINT, you can use
strcmp() if you want, but be careful, it works backward from what you might expect).
Next, read the t=XXXXX value. It is in miliCelsius, so first get the value (skipping the
t= part; there are various ways to do this, remember that in C strings are just arrays of
char, and arrays are just pointers).
Convert the integer miliCelsius value to floating point regular Celsius, and return.

• In an infinite loop, read the temperature value in C and print it to the screen once a second.

(d) Be sure you handle errors that may occur.

(e) Always comment your code!

3. Something Cool (1 point)

Copy your code to temp_cool.c and modify it to do something cool. Some example ideas:

• (Easy) Print the temperature in a different unit (Fahrenheit, Kelvin, etc.)

• (Medium) hook up an analog discovery board and plot a 1-wire transaction. How does it compare
to theory? Send an image along with your assignment.

• (Medium Hard) Automatically search the /sys/bus/w1/devices/ directory for a sensor
name rather than hard-coding it in.

• (Hard) Make the code also read the TMP36 sensor from last homework, and compare how closely
the temperatures match.

• (Hard) Get the sensor working in parasite mode (without Vdd). Write up what you needed to
do to get this to work. It might require wiring things differently, as well as kernel/device-tree
paramaters.

3



4. Questions (2 points)

Answer the following in the README file:

(a) One-wire in theory only uses 1-wire for data plus ground. In this lab we hooked up Vdd too.
Why did we do that? (Hint, look up what’s needed to use parasite power mode in the DS18B20
manual).

(b) If you wanted to connect your pi to a temperature probe 100 yards (approximately 100 meters)
away, and your choices were i2c, spi, or 1-wire, which bus would you use and why?

5. Linux Fun (1 point)

On Linux you can create shell scripts, which are simple scripts that run shell commands.

The first line contains the path to the program that you want to interpret the path. For example

#!/bin/sh

What follows are just a list of commands as you’d type at the prompt.

The "echo" command is used to print text.

echo "Hello World"

Lines starting with a hash # are comment lines.

(a) Edit the sample.sh file (the provided file is empty) to use the /bin/sh shell, and then print a
message of your choice using echo
Make the file executable by using the command chmod +x sample.sh

Be sure to add comments to your script!
Test your shell script by running ./sample.sh

6. Submitting your work

• Run make submit which will create a hw8_submit.tar.gz file containing Makefile,
README, sample.sh, temp_cool.c and display_temp.c.
You can verify the contents with tar -tzvf hw8_submit.tar.gz

• e-mail the hw8_submit.tar.gz file to me by the homework deadline. Be sure to send the
proper file!

4


