
ECE 471 – Embedded Systems
Lecture 5

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 September 2017

http://web.eece.maine.edu/~vweaver


Announcements

• Any questions on HW#1?

Will go over answers next class.

• HW#2 will be posted today

1



Things from Last Time

• Other ways for connecting to Pi (Forgot from last year,

netatalk)

• Forgot about how to find info on how commands work.

ls -h or ls -?, also man ls

• Article on installing Linux on a hard-drive

microcontroller:

http://spritesmods.com/?art=hddhack

2

http://spritesmods.com/?art=hddhack


Why is Linux used in Embedded Systems?

• Linux popular in embedded space because it is cheap/free

and source code is available.

• You can run Windows IoT (would you want to?)

• Linux on ARM is widely supported (although upstream

support is a mess)

• Licensing issues

– Linux under GPLv2.

3



– The Free Software Foundation has moved most of its

software (including gcc compiler) to the less popular

GPLv3 which most companies don’t like.

– Companies often prefer BSD type license which has

fewer restrictions; companies can use code and release

binaries without having to release the source (a GPL

requirement).

– Apple and Google both trying to replace as much code

as possible with BSD versions.

4



Homework #2 background

• It’s mostly about getting your pi up and running, a small

C coding assignment, and some short-answer questions.

• The directions will have you copy a file to your pi. It’s a

.tar.gz file. What is that?

Sort of the Linux equivalent of a zip file

tar = tape archive (ancient history) that runs lots of files

together

gz = gzip, which compresses it (makes it smaller)

you may see other (Z, bz2, xz). What are the differences?

5



Mostly in compressed size vs compress/uncompress

resources

gzip good enough for what we are doing.

• Coding homework is to take some existing C code and

modify it. Can use the editor of your choice. Many on

Linux. “nano” is easy. “vim” if you are serious about

Linux. Also various graphical ones, and if you want you

can even code it up on your desktop/laptop, but you

probably want to copy it over to test before submitting.

6



Why C?

• Portability (sort of)

• Higher than assembly (barely)

• Why over Java or C++?

They can hide what is actually going on. C statements

map more or less directly to assembly. With things like

operator overload, and exceptions, garbage collection,

extra layers are added. This can matter for both size,

speed, determinism, and real time.

7



• Why over python?

Mostly speed. (although you can JIT) Also if accessing

low level hardware, in general you are calling libraries

from python that are written in C anyway.

8



Downsides of C?

• Undefined behavior. Compiler is allowed to do anything

it wants (including dropping code) if it encounters

something undefined by the standard. This can be

something as simple as just overflowing an integer or

shifting by more than 32.

• “Enough rope to shoot yourself in the foot”. C gives a

lot of power, especially with pointers. It assumes you

know what you are doing though. With great power

comes great responsibility.

9



i n t a [ 5 ] ;

a [ 0 ] = 1 ; // f i n e

a [10000000 ]=1; // o b v i o u s l y bad

a [ 5 ] = 1 ; // s u b t l y bad

10



C compiling, Makefiles

• C compiling on Linux

We will use gcc (what others exist. clang?)

Typical command line is something like:

gcc -O2 -Wall -o hello world hello world.c

-O2 is optimization, -Wall is show all warnings

A lot more options, see man page

• We use a Makefile to automate the process. What is

make?

You give it a list of dependencies, then it automatically

11



sees what files have changed and then runs commands

to build things

Feel free to play with it, but a warning, tabs are

significant so weird errors if you use spaces instead.

12



Cross compiling

• Can compile for a different architecture, for example x86

to ARM

• Why do it? Faster. Target doesn’t have enough

resources. Want to target multiple devices.

• To test would need an emulator (like qemu)

13



Comment your Code!

• Comment your code!!!!!

Why?

I will take points off it you don’t.

Also helps other people looking at your code figure out

what’s going on. Including me the graded. Including

you trying to re-use some code a year from now.

Having your name and a description of what the overall

file and each function does doesn’t hurt.

Even fancier commenting conventions companies will

14



have for automated tools.

Mostly comment non-obvious stuff.

So for(i=0;i<10;i++) not so much.

But something like i=4.3+10*j; yes.

You can’t really over-comment (well you can, but it’s

harder to over-comment than under-comment)

15



C Review

In past years sometimes the reason a HW assignment

didn’t work was due to using C poorly rather than

misunderstandings of the desired algorithm.

• Loops in C

for(i=0;i<10;i++) {}
while(i<10) { i++}
do {} while(i<10);

• printf

16



See the man page

How print an integer? printf("%d",i);. Character?

String? floating point? More advanced formatting stuff

Escape characters like percent and quotes.

17



Common C Pitfalls

• Out of bounds in memory (see the a[5] example earlier.

Also a problem with malloc() memory, Valgrind can help

with that.

• Missing braces

i f ( a==0)

b=2;

i f ( a==0)

18



b=2;

c =3;

• = vs ==

i f ( a=0) d o s o m e t h i n g i m p o r t a n t ( ) ;

• Never ignore warnings from the compiler!

19



Debugging

• printf

• gdb

20


