
ECE 471 – Embedded Systems
Lecture 7

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 September 2017

http://web.eece.maine.edu/~vweaver

Announcements

• ???

1

STM32L-Discovery Physical Memory
Layout

RAM

Peripheral Space

Flash

0xffff ffff

0x4000 0000

0x2000 0000 (16k)

0x0800 0000 (128k)

0x0000 0000

Start of code

....

NMI Vector

Reset Vector

Stack Pointer

2

Raspberry Pi Layout

0x1c00 0000

0xffff ffff

0x2100 0000

0x2000 0000

0x0000 0000

0x0000 0100

0x0000 8000

Our Operating

System

Invalid

Peripheral

Registers

GPU RAM

Unused RAM

System Stack

IRQ Stack

ATAGs

IRQ Vectors

(4GB)

(528MB)

(512MB)

(448MB)

(32k)

(256)

(16k)0x0000 4000

3

Linux Virtual Memory Map

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

4

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() (brk() syscall) and

C++ new(). Grows up.

• Stack: LIFO memory structure. Grows down.

5

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

6

Loader

• /lib/ld-linux.so.2

• loads the executable (handles linking in libraries, etc)

7

Static vs Dynamic Libraries

• Static: includes all code in one binary.

Large binaries, need to recompile to update library code,

self-contained, don’t have to worry about incompatible

updates

• Dynamic: library routines linked at load time.

Smaller binaries, share code across system, automatically

links against newer/bugfixes when system library updated

8

How a Program is Loaded

• Kernel Boots

• init started

• init calls fork() – makes an exact copy of itself

• child calls exec() – replaces itself with executable from

disk

• Kernel checks if valid ELF. Passes to loader

9

• Loader loads it. Clears out BSS. Sets up stack. Jumps

to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

10

Assembly Language: What’s it good for?

• Understanding your computer at a low-level

• Shown when using a debugger

• It’s the eventual target of compilers

• Operating system writers (some things not expressible in

C)

• Embedded systems (code density)

• Research. Computer Architecture. Emulators/Simulators.

• Video games (or other perf critical routines, glibc, kernel,

etc.)

11

What the OS gives you at start

• Registers

• Instruction pointer at beginning

• Stack

• command line arguments, aux, environment variables

• Large contiguous VM space

12

ARM Architecture

• 32-bit

• Load/Store

• Can be Big-Endian or Little-Endian (usually little)

• Fixed instruction width (32-bit, 16-bit THUMB)

(Thumb2 is variable)

• arm32 opcodes typically take three arguments

(Destination, Source, Source)

• Cannot access unaligned memory (optional newer chips)

• Status flag (many instructions can optionally set)

13

• Conditional execution

• Complicated addressing modes

• Many features optional (FPU [except in newer], PMU,

Vector instructions, Java instructions, etc.)

14

Registers

• Has 16 GP registers (more available in supervisor mode)

• r0 - r12 are general purpose

• r11 is sometimes the frame pointer (fp) [iOS uses r7]

• r13 is stack pointer (sp)

• r14 is link register (lr)

• r15 is program counter (pc)

reading r15 usually gives PC+8

• 1 status register (more in system mode).

NZCVQ (Negative, Zero, Carry, oVerflow, Saturate)

15

Low-Level ARM Linux Assembly

16

Linux C (ABI)

• Application Binary Interface

• The rules an executable needs to follow in order to talk

to other code/libraries on the system

• A software agreement, this is not enforced at all by

hardware

• r0-r3 are first 4 arguments/scratch (extra go on stack)

(caller saved)

17

• r0-r1 are return value

• r4-r11 are general purpose, callee saved

• r12-r15 are special

• Things are more complex than this. Passing arrays and

structs? 64-bit values? Floating point values? etc.

18

