
ECE 471 – Embedded Systems
Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 September 2018

http://web.eece.maine.edu/~vweaver

Announcements

• HW#2 was posted, it is due Friday

1

Homework #1 Review

• Characteristics of embedded system

◦ embedded inside, resource constrained, dedicated

purpose, real-time

◦ Toothbrush is actual specs I came across

◦ Real-Time Confusion: we will discuss this more in

future.

Toothbrush: Just turning off the motor, and it takes an

extra 1/2s is not really considered a real time thing. No

one dies, no hardware destroyed, just mild annoyance

2

if noticed at all. Now if somehow it had to keep the

waveform to H-bridge exact within 1ms or the motor

would overheat and catch on fire, that could be a

real-time issue.

Microwave: having a clock doesn’t make it real time.

Hopefully the door control has a physical interlock, but

you never know. Usually when cooking food second

granularity and some jitter not matter much.

◦ Limited Hardware

bitness of processor: while 8 or 16 bit probably

embedded these days, 32 vs 64 bit not necessarily

3

a sure sign.

Cost is an interesting one. Something like a desktop

might be optimized for cost extremely, while a one-

off embedded system might not, and in fact might

be over-engineered (like a spaceprobe) because has to

operate in tough conditions.

◦ Operating system?

Can have an OS and still be considered embedded.

◦ Be strong in your convictions!

• ASIC

4

◦ cost/power. Depends a lot on numbers made, process,

and how well designed it is.

◦ Extra hardware overhead? ASIC mostly just flip flops

and gates. SoC internally a lot more, but these days

not much else is needed.

◦ More secure? Can you reverse engineer an ASIC?

• ARM1176JZF-S: Java, TrustZone, Vector Floating,

Synthesizable Jazelle = Java acceleration

This was in the class notes (which I post), and in ARMv6

documentation.

5

How Executables are Made

• Compiler generates ASM (Cross-compiler)

• Assembler generates machine language objects

• Linker creates Executable (out of objects)

6

Tools

• compiler: takes code, usually (but not always) generates

assembly

• assembler: GNU Assembler as (others: tasm, nasm,

masm, etc.)

creates object files

• linker: ld

creates executable files. resolves addresses of symbols.

shared libraries.

7

Converting Assembly to Machine Language

Thankfully the assembler does this for you.

ARM32 ADD instruction – 0xe0803080 == add r3,

r0, r0, lsl #1

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

Data

Processing

Immediate value (if immediate)

ADD opcode

Immediate

9

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

10

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

11

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

12

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

13

STM32L-Discovery Physical Memory
Layout

RAM

Peripheral Space

Flash

0xffff ffff

0x4000 0000

0x2000 0000 (16k)

0x0800 0000 (128k)

0x0000 0000

Start of code

....

NMI Vector

Reset Vector

Stack Pointer

14

Raspberry Pi Layout

0x1c00 0000

0xffff ffff

0x2100 0000

0x2000 0000

0x0000 0000

0x0000 0100

0x0000 8000

Our Operating

System

Invalid

Peripheral

Registers

GPU RAM

Unused RAM

System Stack

IRQ Stack

ATAGs

IRQ Vectors

(4GB)

(528MB)

(512MB)

(448MB)

(32k)

(256)

(16k)0x0000 4000

15

Linux Virtual Memory Map

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

16

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() (brk() syscall) and

C++ new(). Grows up.

• Stack: LIFO memory structure. Grows down.

17

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

18

