
ECE 471 – Embedded Systems
Lecture 8

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 September 2018

http://web.eece.maine.edu/~vweaver

Announcements

• HW#2 was due

• HW#3 will be posted today. Work in groups?

• Note the sample code for this lecture will be posted to

the website.

1

Low-Level ARM Linux Assembly

2

Linux C (ABI)

• Application Binary Interface

• The rules an executable needs to follow in order to talk

to other code/libraries on the system

• A software agreement, this is not enforced at all by

hardware

• r0-r3 are first 4 arguments/scratch (extra go on stack)

(caller saved)

• r0-r1 are return value

• r4-r11 are general purpose, callee saved

3

• r12-r15 are special

• Things are more complex than this. Passing arrays and

structs? 64-bit values? Floating point values? etc.

4

Kernel Programming ABIs

• OABI – “old” original ABI (arm). Being phased out.

slightly different syscall mechanism, different alignment

restrictions

• EABI – new “embedded” ABI (armel)

• hard float – EABI compiled with ARMv7 and VFP

(vector floating point) support (armhf). Raspberry Pi

(raspbian) is compiled for ARMv6 armhf.

5

System Calls (EABI/armhf)

• System call number in r7

• Arguments in r0 - r6

• Return value in r0 (-1 if error, errno in -4096 - 0)

• Call swi 0x0

• System call numbers can be found in

/usr/include/arm-linux-gnueabihf/asm/unistd.h

They are similar to the 32-bit x86 ones.

6

System Calls (OABI)

• The previous implementation had the same system call

numbers, but instead of r7 the number was the argument

to swi.

• This was very slow, as there is no way to determine that

value without having the kernel backtrace the callstack

and disassemble the instruction.

7

Manpage

The easiest place to get system call documentation.

man open 2

Finds the documentation for “open”. The 2 means look

for system call documentation (which is type 2).

8

A first ARM assembly program: hello exit

.equ SYSCALL_EXIT , 1

.globl _start

_start:

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in r7

swi 0x0 @ and exit

9

Some GNU assembler notes

• Code comments

◦ @ is the traditional comment character

◦ # can be used on line by itself but will confuse

assembler if on line with code.

◦ Can also use /* */ and //

◦ *Cannot* use ;

• Order is source, destination

• Constant value indicated by # or $

• .equ is equivalent to a C #define

10

hello exit example

Assembling/Linking using make, running, and checking the

output.

lecture6$ make hello_exit_arm

as -o hello_exit_arm.o hello_exit_arm.s

ld -o hello_exit_arm hello_exit_arm.o

lecture6$./hello_exit_arm

lecture6$ echo $?

5

11

Let’s look at our executable

• ls -la ./hello exit arm

Check the size

• readelf -a ./hello exit arm

Look at the ELF executable layout

• objdump --disassemble-all ./hello exit arm

See the machine code we generated

• strace ./hello exit arm

Trace the system calls as they happen.

12

hello world example
.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

mov r0 ,# STDOUT /* stdout */

ldr r1 ,= hello

mov r2 ,#13 @ length

mov r7 ,# SYSCALL_WRITE

swi 0x0

Exit

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number in r7

swi 0x0 @ and exit

.data

hello: .ascii "Hello World !\n"

13

New things to note in hello world

• The fixed-length 32-bit ARM cannot hold a full 32-bit

immediate

• Therefore a 32-bit address cannot be loaded in a single

instruction

• In this case the “=” is used to request the address

be stored in a “literal” pool which can be reached by

PC-offset, with an extra layer of indirection.

• Data can be declared with .ascii, .word, .byte

• BSS can be declared with .lcomm

14

string count example

Count the number of chars in a string until we hit a space.
mov r1 ,= hello # load pointer to hello string into r1

mov r2 ,#0 # initialize count to zero

loop:

ldrb r0 ,[r1] # load byte pointed by r1 into r0

cmp r0 ,#’ ’ # compare r0 to space character

this updates the status flags

beq done # if it was equal , we are done

add r2 ,r2 ,#1 # increment our count

add r1 ,r1 ,#1 # increment our pointer

b loop # branch (unconditionally) to loop

done:

15

simple loop example

for(i=0;i<10;i++) do_something ();

mov r0 ,#0 # set loop index to zero

loop:

push {r0} # save r0 on stack

bl do_something # branch to subroutine , saving

return address in link register

pop {r0} # restore r0 from stack

add r0 ,r0 ,#1 # increment loop counter

cmp r0 ,#10 # have we reached 10 yet?

bne loop # if not , loop

16

