ECE 471 — Embedded Systems
Lecture 8

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 September 2018

http://web.eece.maine.edu/~vweaver

Announcements

o HW+#2 was due
e HWH#3 will be posted today. Work in groups?

e Note the sample code for this lecture will be posted to
the website.

Low-Level ARM Linux Assembly

Linux C (ABI)

e Application Binary Interface

e The rules an executable needs to follow in order to talk
to other code/libraries on the system

e A software agreement, this is not enforced at all by
hardware

e r0-r3 are first 4 arguments/scratch (extra go on stack)
(caller saved)

e rO-rl are return value

e r4-r11 are general purpose, callee saved

-y 3

e r12-r15 are special
e Things are more complex than this. Passing arrays and
structs? 64-bit values? Floating point values? etc.

Kernel Programming ABIs

e OABI — “old" original ABI (arm). Being phased out.
slightly different syscall mechanism, different alignment

restrictions

e EABI — new “embedded” ABI (armel)

e hard float — EABI compiled with ARMv7 and VFP
(vector floating point) support (armhf). Raspberry Pi
(raspbian) is compiled for ARMv6 armhf.

System Calls (EABI/armhf)

e System call number in r7

e Arguments in r0 - r6

e Return value in rO (-1 if error, errno in -4096 - 0)
e Call swi 0x0

e System call numbers can be found in
/usr/include/arm-linux-gnueabihf/asm/unistd.h
They are similar to the 32-bit x86 ones.

-y 6

System Calls (OABI)

e [he previous implementation had the same system call

numbers, but instead of r7 the number was the argument
to swi.

e [his was very slow, as there is no way to determine that
value without having the kernel backtrace the callstack
and disassemble the instruction.

Manpage

The easlest place to get system call documentation.

man open 2

Finds the documentation for “open”. The 2 means look
for system call documentation (which is type 2).

A first ARM assembly program: hello_exit

.equ SYSCALL_EXIT, 1

_start:
#================================
Exit
#================================

exit:
mov r0 ,#5
mov r7 ,#SYSCALL_EXIT @ put exit syscall number (1) in r7
swi 0x0 @ and exit

Some GNU assembler notes

e Code comments
o @ is the traditional comment character
o # can be used on line by itself but will confuse
assembler if on line with code.
o Can also use /* */ and //
o *Cannot* use :
e Order is source, destination
e Constant value indicated by # or $
e .equ is equivalent to a C #define

-y 10

hello_exit example

Assembling /Linking using make, running, and checking the
output.

lecture6$ make hello _exit_arm
as -0 hello_exit_arm.o hello_exit_arm.s
1ld -0 hello_exit_arm hello_exit_arm.o

lecture6$./hello _exit_arm
lecture6$ echo $7
5

/Y 11

Let’s look at our executable

e 1s -1la ./hello_exit_arm
Check the size

e readelf -a ./hello_exit_arm
Look at the ELF executable layout

e objdump --disassemble-all ./hello_exit_arm
See the machine code we generated

e strace ./hello_exit_arm
Trace the system calls as they happen.

12

hello_world example

.equ SYSCALL_EXIT, 1
.equ SYSCALL_WRITE, 4
.equ STDOUT, 1

_start:

exit:

.data
hello:

.globl _start

mov r0 ,#STDOUT /* stdout */

ldr rl,=hello

mov r2,#13 @ length

mov r7 ,#SYSCALL_WRITE

swi 0x0

Exit

mov r0 ,#5

mov r7 ,#SYSCALL_EXIT @ put exit syscall number in r7
swi 0x0 @ and exit

.ascii "Hello_ World'\n"

13

New things to note in hello_world

e [he fixed-length 32-bit ARM cannot hold a full 32-bit
Immediate

e [herefore a 32-bit address cannot be loaded in a single
Instruction

e In this case the “=" Is used to request the address

e stored in a “literal” pool which can be reached by

P(C-offset, with an extra layer of indirection.

e Data can be declared with .ascii, .word, .byte

e BSS can be declared with .[comm

-y 14

string count example

Count the number of chars in a string until we hit a space.

mov rl,=hello # load pointer to hello string into ri
mov r2 ,#0 # 1nitialize count to zero
loop:
ldrb r0,[r1] # load byte pointed by rl into rO0
cmp r0,#7 .’ # compare r0O to space character
this updates the status flags
beq done # if it was equal, we are done
add r2,r2,#1 # increment our count
add rli,rl ,#1 # increment our pointer
b loop # branch (unconditionally) to loop
done:

-y 15

loop:

simple loop example

for(i=0;i<10;i++) do_something();

mov r0,#0 # set loop index to zero
push {r0} # save r0 on stack
bl do_something # branch to subroutine, saving
return address 1in link register
pop {r0} # restore r0 from stack
add rO,r0,#1 # increment loop counter
cmp r0,#10 # have we reached 10 yet?
bne loop # if not, loop

16

