
ECE 471 – Embedded Systems
Lecture 27

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 November 2018

http://web.eece.maine.edu/~vweaver


Announcements

• I will respond soon to project ideas!

• Midterm Friday

• Makeup test on Thursday if you need it, contact me

please

• HW grades have been posted

1



Academic Integrity

• I shouldn’t have to be telling this to a 400 level class

• Things that are OK

◦ Writing own code

◦ Writing code, sharing with partner

◦ Writing code, needing help, ask me, or the TA

(colin.leary)

◦ Writing code, doing a google search for help (help!

not looking for code to copy, but for advice)

◦ Writing code, asking other students in class to look at

2



it or discuss at high level the problem

• Things that are *not* OK

◦ Taking someone else’s code verbatim and turning it in

as yours.

◦ Cut-and-pasting major chunks of code from someone

else, turning it in as yours

◦ Taking someone else’s code, retyping it,

maybe changing the indentation, comments, and

copy/replacing a few variable names and turning it

in as yours

• We learned in the last few classes why copying code

3



you don’t really understand is bad (could read to rocket

crashes, etc)

• It’s also a good way to get your company sued if you get

caught doing this at your job

4



Homework 6 Review

• i2c: No, the clock is not fully implemented in the

protocol. What does that mean? Many groups used

that exact wording too.

• read SCL is unused. how would it be used? clock

stretching

• Yes – can be used for system load but that’s not really

the intended purpose. Test interrupts?

• Code: be careful cutting and pasting! A lot of issues

where you cut and paste SDA code to SCL but forgot

5



to change SDA to SCL

Changing what GPIOs are used?

6



Homework 7 Review

• Be sure to set single-ended mode properly (see data

sheet)

0xa not 0x2

• Make sure for temp you have it hooked to CH2

• How to clear all but bottom 2 bits? and with 0x3 (not

0x2)

• When doing C to F, be sure to use floating point

constants 5.0/9.0 or else C does integer math.

really, think about what temp it is

7



• Use the right conversion routines. The ones in class/the

manual, not just something you find on the internet

• Don’t memset after you set the values for the ioctl

• people with Analog Discovery

8



Homework 8 Review

• Some C coding mistakes

◦ Error checking. Exit if cannot open. If you don’t, can

segfault if try to scanf error fd

◦ Returning -1 on error might be bad idea

◦ Check for errors! What could go wrong? What if

different sensor used, don’t segfault.

◦ If using streams (FILE *fff), on fopen() error it returns

NULL, not -1.

◦ Be sure to close files, otherwise leak file descriptors

9



◦ Confusion about how #define SENSOR works. Can’t

include C pre-processor directives inside of a string

◦ fgets only gets up to linefeed

◦ Finding a file using C. opendir() readdir(), horrible

interface

• Why need Vdd? To provide enough current for this

particular chip needs extra current if you want parasite

mode.

You can try without Vdd but you will always read out

85C.

Manual suggests MOSFET, but apparently it’s possible

10



on Pi if use 4.7k resistor as well as “strong-pullup=y”

kernel command line option.

• Because of distance, 1-wire

• shell script

Trouble if edit on windows, why (linefeed vs carriage

return)

shebang description. Making executable with chmod

11



Midterm Review

• Booting on the Pi

◦ What a bootloader does

◦ Why Pi is unusual

• Real Time

◦ Definitions

◦ Is this hard, soft, firm

• i2c/SPI/1-wire

◦ Know the tradeoffs between

◦ Be able to follow the C code for them

12



• Security

◦ Buffer overrun, why it is bad

• Coding Practices

◦ Be aware of the case studies we suggested

◦ Know of some of the recommended ways to write safer

C code

13



Stuff from last time

14



Good Test Practices

• Unit testing

• Test Driven Development – tests written before the code

happens, needs to pass the tests before done

• Fuzzing

• Documentation

Source control

15



Space Shuttle Design

• https://www.nasa.gov/mission_pages/shuttle/flyout/

flyfeature_shuttlecomputers.html

• Issues normal embedded systems don’t have: Vibration

at liftoff, Radiation in Space

• If computer stopped for more than 120ms, shuttle could

crash

• “Modern” update in 1991: 1MB Ram, 1.4MIPS. Earlier

was 416k and 1/3 as fast and twice as big

• Change to code, 9 months testing in simulator, 6 months

16

https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html
https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html


more extensive testing

• 24 years w/o in-orbit SW problem needing patches

• 12 year stretch only 3 SW bugs found

• 400k lines of code

• HAL/S high-order assembly language (high-level

language similar to PL/I)

• PASS software – runs tasks. Too big to fit in memory

at once

• BFS – backup flight software. Bare minimum to takeoff,

stay in orbit, safely land, fits in memory, monitors pASS

during takeoff/landing Written by completely different

17



team.

• 28 months to develop new version

• IBM

• Extensive verification. One internal pass, one external

• 4 computers running PASS, one running BFS

• Single failure mission can continue; still land with two

failures

• 4 computers in lock-step, vote, defective one kicked out

18


