
ECE 498 – Linux Assembly
Language
Lecture 6

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

4 December 2012



THUMB Review

• Most instructions length 16-bit (a few 32-bit)

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• No prefix/conditional execution

• Only two arguments to opcodes

1



(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

• Limited addressing modes

• No shift parameter in ALU instructions

2



THUMB/ARM interworking

• See print string armthumb.s

• BX/BLX instruction to switch mode.

If target is a label, always switchmode

If target is a register, low bit of 1 means THUMB, 0

means ARM

• Can also switch modes with ldrm, ldm, or pop with PC

as a destination

(on armv7 can enter with ALU op with PC destination)

3



• Can use .thumb directive, .arm for 32-bit.

4



THUMB-2

• Extension of THUMB to have both 16-bit and 32-bit

instructions

• 32-bit instructions not standard 32-bit ARM instructions.

It’s a new encoding that allows an instruction to be 32-

bit if needed.

• All 32-bit ARM instructions have 32-bit THUMB-2

equivalents except ones that use conditional execution.

The it instruction was added to handle this.

5



• THUMB-2 code can assemble to either ARM-32 or

THUMB2

The assembly language is compatible.

Common code can be written and output changed at

time of assembly.

6



THUMB-2 Coding

• See test thumb2.s

• Use .syntax unified at beginning of code

• Use .arm or .thumb to specify mode

7



New THUMB-2 Instructions

• BFI – bit field insert

• RBIT – reverse bits

• movw/movh – 16 bit immediate loads

• TB – table branch

• IT (if/then)

• cbz, cbnz – compare and branch if not zero. Only jumps

8



forward

9



Other THUMB-2 Changes

• Instructions have “wide” and “narrow” encoding.

Can force this (add.w vs add.n).

• rsc (reverse subtract with carry) removed

• Need to properly indicate “s” (set flags).

Regular THUMB this is assumed.

10



Thumb-2 12-bit immediates

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

0100 -- 1bcdedfh 00000000 00000000 00000000

...

1111 -- 00000000 00000000 00000001 bcdefgh0

11



IT (If/Then) Instruction

• Allows limited conditional execution in THUMB-2 mode.

• The directive is optional (and ignored in ARM32)

the assembler can (in-theory) auto-generate the IT

instruction

• it cc

addcc %r1,%r2

• itete cc

addcc %r1,%r2

12



addcs %r1,%r2

addcc %r1,%r2

addcs %r1,%r2

• Limit of 4 instructions

13



Compiler

• gcc -S hello world.c

On pandarboard creates Thumb-2 by default. Why?

• gcc -S -march=armv5t -mthumb hello world.c

On my pandaboard, doesn’t work. This is because gcc’s

16-bit THUMB can’t handle the “hard floating point”

ABI that is installed on the system.

• gcc -S -marm hello world.c

On my pandaboard, creates 32-bit ARM code

14


