ECE 498 — Linux Assembly
Language
Lecture 6

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

4 December 2012

THUMB Review

e Most instructions length 16-bit (a few 32-bit)

e Some operands (sp, Ir, pc) implicit
Can't always update sp or pc anymore.

e Only rO-r7 accessible normally
add, cmp, mov can access high regs

e No prefix/conditional execution

e Only two arguments to opcodes

(some exceptions for small constants: add rO,r1,#1)
e 3-bit constants rather than 12-bit

e Makes assumptions about “S" setting flags
(gas doesn’t let you superfluously set it, causing problems
if you naively move code to THUMB-2)

e Limited addressing modes

e No shift parameter in ALU instructions

THUMB /ARM interworking

e See print_string_armthumb.s

e BX/BLX instruction to switch mode.
If target is a label, always switchmode
If target is a register, low bit of 1 means THUMB, 0
means ARM

e Can also switch modes with 1drm, 1dm, or pop with PC
as a destination
(on armv7 can enter with ALU op with PC destination)

-y 3

e Can use .thumb directive, .arm for 32-bit.

THUMB-2

e Extension of THUMB to have both 16-bit and 32-bit
Instructions

e 32-bit instructions not standard 32-bit ARM instructions.

It's a new encoding that allows an instruction to be 32-
bit if needed.
e All 32-bit ARM instructions have 32-bit THUMB-2

T

equivalents except ones that use conditional execution.

he it instruction was added to handle this.

-y 5

HUMB-2 code can assemble to either ARM-32 or
HUMB2

ne assembly language is compatible.

Common code can be written and output changed at
time of assembly.

THUMB-2 Coding

e See test_thumb2.s
e Use .syntax unified at beginning of code

e Use .arm or .thumb to specify mode

New THUMB-2 Instructions

e BF| — bit field insert

e RBIT — reverse bits

e movw/movh — 16 bit immediate loads
e [B — table branch

o IT (if/then)

e cbz, cbnz — compare and branch if not zero. Only jumps

-y g

forward

Other THUMB-2 Changes

e Instructions have “wide’ and “narrow” encoding.

Can force this (add.w vs add.n).
e rsc (reverse subtract with carry) removed

e Need to properly indicate “s” (set flags).
Regular THUMB this Is assumed.

10

Thumb-2 12-bit immediates

top 4 bits 0000
0001
0010
0011
0100

1111

00000000
00000000
abcdefgh
abcdefgh
1bcdedfh

00000000

00000000
abcdefgh
00000000
abcdefgh
00000000

00000000

00000000
00000000
abcdefgh
abcdefgh
00000000

00000001

11

ab
ab
00(
ab
00(

bc«

IT (If/Then) Instruction

e Allows limited conditional execution in THUMB-2 mode.

e The directive is optional (and ignored in ARM32)
the assembler can (in-theory) auto-generate the IT
Instruction

e 1t ccC
addcc Yrl,/r2

e 1tete ccC
addcc %ril,%r2

-y 1

addcs Yrl,/r2
addcc Yrl,%r2
addcs Yril,%r2

e Limit of 4 instructions

13

Compiler

e gcc —-S hello_world.c
On pandarboard creates Thumb-2 by default. Why?

e gcc -5 —march=armvbt -mthumb hello_world.c

On my pandaboard, doesn't work. This is because gcc's
16-bit THUMB can’t handle the “hard floating point”
ABI that is installed on the system.

e gcc -5 —marm hello_world.c
On my pandaboard, creates 32-bit ARM code

-y 14

