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THUMB Review

e Most instructions length 16-bit (a few 32-bit)

e Some operands (sp, Ir, pc) implicit
Can't always update sp or pc anymore.

e Only rO-r7 accessible normally
add, cmp, mov can access high regs

e No prefix/conditional execution

e Only two arguments to opcodes



(some exceptions for small constants: add rO,r1,#1)
e 3-bit constants rather than 12-bit

e Makes assumptions about “S" setting flags
(gas doesn’t let you superfluously set it, causing problems
if you naively move code to THUMB-2)

e Limited addressing modes

e No shift parameter in ALU instructions



THUMB /ARM interworking

e See print_string_armthumb.s

e BX/BLX instruction to switch mode.
If target is a label, always switchmode
If target is a register, low bit of 1 means THUMB, 0
means ARM

e Can also switch modes with 1drm, 1dm, or pop with PC
as a destination
(on armv7 can enter with ALU op with PC destination)
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e Can use .thumb directive, .arm for 32-bit.



THUMB-2

e Extension of THUMB to have both 16-bit and 32-bit
Instructions

e 32-bit instructions not standard 32-bit ARM instructions.

It's a new encoding that allows an instruction to be 32-
bit if needed.
e All 32-bit ARM instructions have 32-bit THUMB-2

T

equivalents except ones that use conditional execution.

he it instruction was added to handle this.
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HUMB-2 code can assemble to either ARM-32 or
HUMB2

ne assembly language is compatible.

Common code can be written and output changed at
time of assembly.




THUMB-2 Coding

e See test_thumb2.s
e Use .syntax unified at beginning of code

e Use .arm or .thumb to specify mode



New THUMB-2 Instructions

e BF| — bit field insert

e RBIT — reverse bits

e movw/movh — 16 bit immediate loads
e [ B — table branch

o IT (if/then)

e cbz, cbnz — compare and branch if not zero. Only jumps
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forward




Other THUMB-2 Changes

e Instructions have “wide’ and “narrow” encoding.

Can force this (add.w vs add.n).
e rsc (reverse subtract with carry) removed

e Need to properly indicate “s” (set flags).
Regular THUMB this Is assumed.
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Thumb-2 12-bit immediates

top 4 bits 0000
0001
0010
0011
0100

1111

00000000
00000000
abcdefgh
abcdefgh
1bcdedfh

00000000

00000000
abcdefgh
00000000
abcdefgh
00000000

00000000

00000000
00000000
abcdefgh
abcdefgh
00000000

00000001
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ab
ab
00(
ab
00(

bc«



IT (If/Then) Instruction

e Allows limited conditional execution in THUMB-2 mode.

e The directive is optional (and ignored in ARM32)
the assembler can (in-theory) auto-generate the IT
Instruction

e 1t ccC
addcc Yrl,/r2

e 1tete ccC
addcc %ril,%r2
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addcs Yrl,/r2
addcc Yrl,%r2
addcs Yril,%r2

e Limit of 4 instructions
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Compiler

e gcc —-S hello_world.c
On pandarboard creates Thumb-2 by default. Why?

e gcc -5 —march=armvbt -mthumb hello_world.c

On my pandaboard, doesn't work. This is because gcc's
16-bit THUMB can’t handle the “hard floating point”
ABI that is installed on the system.

e gcc -5 —marm hello_world.c
On my pandaboard, creates 32-bit ARM code
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