
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 3

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 January 2017

http://web.eece.maine.edu/~vweaver

Announcements

• Back from Arizona.

• Homework #1 was due.

• Homework #2 (a reading) will be posted

1

Microprocessors

• Also known as Central Processing Unit (CPU)

• Do the general purpose calculations in a system

• Originally big, multi-cabinet, multi-board, multi-chip

• The first “microprocessor” was one that could fit on one

chip.

Often regarded as the 4-bit Intel 4004. (history?)

• In the old days you could buy a discrete CPU, plop onto

circuit board, hook up some memory and a terminal,

and you had a computer.

2

• These days things are a lot more complex.

3

Simple CPU

Program Counter

Memory

+4

Address from

 ALU

Branch

Instruction

Decode

Opcode Immediate R0 R1 R2 Register File

ALU

Control

• Program Counter / Instruction Pointer points to next

4

instruction

Increments each clock and loads next instruction from

memory. If a branch instead loads new address if branch

taken.

• Instruction is decoded. Opcode (says what type of

instruction), Registers to use, possibly an immediate

value.

• Opcode goes to control (usually a PLA) that splits up

signals to all the functional units and tells them what to

do (what kind of operation, whether to read or write, to

branch or not, etc)

5

• Source register values are read from register file and fed

to ALU

• ALU does math/logic based on control

• Result written back to destination register on register

file.

• If load or store instruction, then address calculated (often

by ALU) and sent to memory. If load, value written to

reg file, if store value to write sent out

• Once instruction is done, advance to next instruction.

6

CPU – Design decisions

• ISA (Instruction Set Architecture) – what insns do you

need?

ALU: add/sub/and/or/xor (mul and divide? many do

not have)

memory: load/store

branch: branch if zero/not zero

shift?

nop? often a pseudo-op

syscall?

7

compare (can be implemented with subtract)

Lots of other stuff *can* be added. Floating Point.

String copy. Predicated/conditional execution. Crazy

polynomial/vector insns.

• Other decisions: how many arguments to opcode? 2 or

3?

• Flags register?

• Number of registers? 1/3/8/16/32/128/windowed?

• Decode logic: Fixed-width 4-byte (32-bit) instructions?

Completely variable sized instructions (x86 1-15 bytes?)

VLIW (3-instructions in a 128-bit package?)

8

Embedded (THUMB, THUMB2) mostly 16-bit (Code

Density)

• RISC vs CISC

• Big or Little Endian?

• Bitsize (4, 8, 16, 32, 64 bit?)

What does that mean? Size of registers? ALU? Memory

Address Range? Data bus width? Complex issue.

9

Simple Computer

10

6502

1MHz

Reset

D0
...

D7

A0
...

A15
Memory

 32k

Decoder

CE

R/W

ROM

8K

CE

T
ri

−
S

ta
te

T
ri

−
S

ta
te

CPU

I/O
Keypad

Display
Serial

IRQ R/W

11

• Clock crystal keeps everything in sync (can you run

without clock? Yes, asynchronous chips, harder to

design)

• Reset button to restart things, start PC at known address

• Address bus, addresses are put out. 16-bit address space,

16 pins, 216 (64k) addresses.

This is used to address instructions *and* data

Usually tri-state buffers are used to protect CPU pins

and also allow multiple devices to drive address bus if

needed

• Data bus: bi-directional (read/write)

12

• To read memory: CPU puts address on address bus,

says want to read. Decoder logic enables proper device.

Device decodes address, finds 8-bit value, puts it on data

bus. CPU latches the result and does whatever with it

(puts in instruction buffer, puts in register)

• To write memory: CPU puts data on data bus, address

on address bus, sets write signal.

• Reading from ROM much like RAM, only you can’t write

it

• Memory-mapped I/O, the device is enabled by decoder

when address matches. Puts data on data bus just like

13

RAM would.

If I/O wants CPU attention it can pull an IRQ line to

request interrupt. Otherwise CPU must poll.

• I show a 6502 CPU in example. Simple CPU, found in

Apple II, Commodore, NES, many others. Designed in

part by UMaine alum Chuck Peddle. Not often used

for quick designs like shown because the clock circuitry

was quite complex (but better than say the 8080 which

needed all kinds of crazy voltages).

14

Design Contraints

• Number of pins

◦ DIP (dual inline package): 4004 = 16,

z80/6502/8080/8086 = 40

◦ PGA (pin grid array): Pentium = 273

◦ LGA (land grid array) pins on socket not chip):

Sandybridge = 1000+

15

More Complex Early computers

• Original IBM PC

• Additional helper chips to 8086. Keyboard controller,

interrupt controller, DMA controller (did memory

refresh, etc), programmable interval timer

• ISA system bus, more or less just exposed CPU

address/data bus to slot connectors

• Dynamic memory

• 8086 had separate I/O port space

• Memory too slow, had wait states

16

• 8086 was full 16-bit CPU. PC uses 8088 which had only

8-bit data bus (but same ISA!). Also 24-bit address bus,

played games to address properly.

17

Modern Systems Even More Complex

• PCI bus

• North/South Bridges

• Everything on SoC

• Fast memory much more complex

• Everything else we are going to learn about in this class.

18

