
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 14

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 March 2017

http://web.eece.maine.edu/~vweaver


Announcements

• Handback midterms / midterm review

• Project ideas due Thursday

• Call for Participation: 2nd Cache Replacement

Championship (CRC-2) http://crc2.ece.tamu.edu

1

http://crc2.ece.tamu.edu


Go Over Midterms

Average grade is an 88%.

1. Performance/Benchmarking

(a) Benchmark question:

Companies often have build farms. Why? Slow to

build (try android, or Linux-distro, or mozilla) Also,

some will build and test any time you make a git

commit

Was just looking for a compiler benchmark (could

be anything, but SPEC CPU does include a gcc

2



benchmark).

(b) perf-record/perf-annotate: memory is slow! (key

theme from this class)

skid is likely the reason

2. Power

(a) Table

(b) Energy

(c) Performance – just plain time, not ED or ED2

(d) Energy Delay

3



(e) Why Energy Delay? Takes performance into account

3. Branch Prediction

(a) 1 miss/9 hits

(b) 1 miss/9 hits – so why use dynamic? It potentially

does better in the non-loop case (loops are easy)

(c) Why worse prediction on embedded? Likely have

smaller/less tuned branch predictors compiler? in

theory, but not sure compilers ever optimize for branch

prediction rates. maybe on arm/cond exec?

4. Cache

4



(a) 4/4/24

(b) Cache example, most did well. The problem was on

misses. All were cold. Cold if you’ve never been in

cache before, doesn’t matter if you kick something out.

Even with more ways it doesn’t help a cold miss.

(c) Prefetch. Can hurt

5



Virtual Memory again

6



Diagram

Text

Data

BSS

Heap

Stack

Kernel

Text

Data

BSS

Heap

Stack

Kernel

Virtual Process 1 Virtual Process 2

Physical RAM

7



Hierarchical Page Table Diagram

Virtual Address

10bits 10bits 12bits

Physical Memory

Page Table

Base Address

(Stored in a register)

4MB Page Table 4kB page tables

8



Walking the Page Table

• Can be walked in Hardware or Software

• Hardware is more common

• Early RISC machines would do it in Software. Can be

slow. Has complications: what if the page-walking code

was swapped out?

• If hardware, usually there’s a special register that you

set that points to the start of the current processes page

table

9



TLB

• Translation Lookaside Buffer

(Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level multi-

way

10



Flushing the TLB

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out.

• Hurts performance as the TLB gradually refills

• Avoiding this is why the top part is mapped to kernel

under Linux

• If a virt/phys mapping change happens, have to notify

all processors in system. Sometimes called a “TLB

Shootdown”

11



What happens on a memory access

• Cache hit, generally not a problem, see later. To be in

cache had to have gone through the whole VM process.

Although some architectures do a lookup anyway in case

permissions have changed.

• Cache miss, then send access out to memory

• If in TLB, not a problem, right page fetched from

physical memory, TLB updated

• If not in TLB, then the page tables are walked

12



• It no physical mapping in page table, then page fault

happens

13



What happens on a page fault

• “minor” – page is already in memory, just need to point a

PTE at it. For example, shared memory, shared libraries,

etc.

• “major” – page needs to be created or brought in from

disk. Demand paging.

Needs to find room in physical memory. If no free space

available, needs to kick something out. Disk-backed

(and not dirty) just discarded. Disk-backed and dirty,

written back. Memory can be paged to disk. Eventually

14



can OOM. Memory is then loaded, or zeroed, and PTE

updated. Can it be shared? (zero page)

• “invalid” – segfault

15



What happens on a fork?

• Do you actually copy all of memory?

Why would that be bad? (slow, also often exec() right

away)

• Page table marked read-only, then shared

• Only if writes happen, take page fault, then copy made

Copy-on-write

16



Virtual Memory – Cache Concerns

17



Cache Issues

• Page table Entries are cached too

• What happens if more memory can fit in the cache than

can be covered by the TLB?

• If you have 128 TLB entries * 4kB you can cover 512kB

• If your cache is larger (say 1MB) then a simple walk

through the cache will run out of TLB entries, so page

lookups will happen (bringing page table data into cache)

and so you do not get maximal usefulness from the cache

18



• This has happened in various chips over the years

19



Physical Caches

Virtual Offset

TLB

Physical Offset

Tag IDX Off

Cache

20



Physical Caches, PIPT

• Location in cache based on physical address

• Can be slower, as need TLB lookup for each cache access

• No need to flush cache on context switch (or ever, really)

• No need to do TLB lookup on writeback

21



Virtual Caches

Virtual Offset

Cache

Tag IDX Off

Physical Offset

TLB

Writeback

22



Virtual Caches

• Location in cache based on virtual address

• Faster, as no need to do TLB lookup before access

• Will have to use TLB on miss (for fill) or when writing

back dirty addresses

• Cache might have extra bits to indicate permissions so

TLB doesn’t have to be checked on write

• Aliasing: Homonyms: Same virtual address (in multiple

processes) map to different physical page

◦ Mist flush cache on context switch?

23



◦ How to avoid flushing? Have a process-id (ASID).

Can also implement sharing this way, by both processes

mapping to same virt address.

◦ Having kernel addresses high also avoids aliasing

• Aliasing: Synonyms: Phys address has two virtual

mappings

◦ Operating system might use page or cache coloring

• Operating system has to do more work.

24



VIPT

Virtual Offset

TLB

Physical

Cache

compare

tags

index

25



• Cache lookup and TLB lookup in parallel. Cache size +

associativity must be less than page size.

• If properly sized, the index bits are the same for virt and

physical. In this case no need to do TLB lookup on

cache hit.

• If not sized, the extra index bits need to be stored in the

cache so they can be passed along with the tag when

doing a lookup

26



Combinations

• PIPT – older systems. Slow, as must be translated (go

through TLB) for every cache access (don’t know index

or tag until after lookup)

• VIVT – fast. Do not need to consult TLB to find data

in cache.

• VIPT – ARM L1/L2. Faster, cache line can be looked

up in parallel with TLB. Needs more tag bits.

• PIVT – theoretically possible, but useless. As slow as

27



PIPT but aliasing like VIVT.

28



Dealing with Limitations?

29



Large Pages

• Another way to avoid problems with 64-bit address space

• Larger page size (64kB? 1MB? 2MB? 2GB?)

• Less granularity. Potentially waste space

• Fewer TLB entries needed to map large data structures

• Compromise: multiple page sizes.

Complicate O/S and hardware. OS have to find free

blocks of contiguous memory when allocating large page.

30



• Transparent usage? Transparent Huge Pages?

Alternative to making people using special interfaces

to allocate.

31



Having Larger Physical than Virtual
Address Space

• 32-bit processors cannot address more than 4GB

x86 hit this problem a while ago, ARM just now

• Real solution is to move to 64-bit

• As a hack, can include extra bits in page tables, address

more memory (though still limited to 4GB per-process)

• Linus Torvalds hates this.

32



• Hit an upper limit around 16-32GB because entire low

4GB of kernel addressable memory fills with page tables

33



Haswell Virtual Memory

• L1 (4-way associative)

– 64 4kB

– 32 2MB

– 4 1GB

• L2 (1024 entry 8-way associative, combined 4kB and

2M)

• DCache – 32kB/8-way so VIPT possible

34



Cortex A9 MMU

• Virtual Memory System Architecture version 7

(VMSAv7)

• page table entries that support 4KB, 64KB, 1MB, and

16MB

• global and address space ID (no more TLB flush on

context switch)

• instruction micro-TLB (32 or 64 fully associative)

35



• data micro-TLB (32 fully associative)

• Unified main TLB, 2-way, 2x64 (128 total) on

pandaboard

• 4 lockable entries (why want to do that?)

• Supports hardware page table walks

36



Cortex A9 MMU

• Virtual Memory System Architecture version 7

(VMSAv7)

• Addresses can be 40bits virt / 32 physical

• First check FCSE – linear translation of bottom 32MB

to arbitrary block in physical memory (optional with

VMSAv7)

37



Cortex A9 TLB

• micro-TLB. 1 cycle access. needs to be flushed if ASID

changes

• fully-associative lockable 4 elements plus 2-way larger.

varying cycles access

38



Cortex A9 TLB Measurement

16 32 64 128 256 512

Matrix size

10000

100000

1000000

10000000

100000000

1000000000

10000000000

S
ta

ll
s

Dcache Stalls (r61)

TLB stalls (r83)

mTLB Stalls (r85)

L1 Cache Size

uTLB (32) Coverage

TLB (128) Coverage

L2 Cache

39


