ECES574: Cluster Computing — Homework 5
Pthreads

Due: Thursday 23 February 2017, 3:30pm

1. Background

e In this homework we will take the sobel code from HW#4 and parallelize it using pthreads.
e You may work in groups, just like the last homework.
e A good tutorial on pthreads can be found here:

https://computing.llnl.gov/tutorials/pthreads/

2. Setup

e For this assignment, log into the same Haswell-EP machine we used in previous homeworks. As
a reminder, use the username handed out in class and ssh in like this

ssh —p 2131 username@weaver—-lab.eece.maine.edu

e Download the code template from the webpage. You can do this directly via
wget http://web.eece.maine.edu/~vweaver/classes/ece574_2017s/ece574_hw5_code.tar.gz

to avoid the hassle of copying it back and forth.

e Decompress the code
tar —-xzvf eceb74_hwb_code.tar.gz

e Run make to compile the code.

e You may use your own code from HW#4 as a basis for this assignment. (Alternately some really
poorly-optimized sample code is provided). To use your code just copy your sobel . c file from
HW#4 over top of the sobel_coarse. c file in the HW#5 directory.

3. Coding (7 points)

Implement simple two-thread parallelism where you run sobel_x and sobel_y in parallel, but then join
and do the combine step serially.

e Edit the file sobel_coarse.c
e Convert the code to use pthreads.
e You may need to add #include <pthread.h>

e Modify generic_convolve to be of void * type and take one void « argument. You will
have to create a st ruct to hold the values you want to pass in and do some casting back and
forth from the void pointer. This is some tricky C coding, so the provided sobel_coarse.c
example shows you how to do this.

e Create one thread for each convolve operation using pthread_create ()
e Once both threads are running, have the main thread wait for them using pthread_join ()
e Be sure to comment your code!

e Compare the results generated to make sure they match the output given by your HW#4 code.

https://computing.llnl.gov/tutorials/pthreads/
http://web.eece.maine.edu/~vweaver/classes/ece574_2017s/ece574_hw5_code.tar.gz

Run your code using

sbatch time_sobel.sh

Which will use the provided IMG_1733.JPG

Report how long it takes to run compared the the time taken by your single-threaded HW#4 code.

4. Instrument with PAPI (2 points)

I had some trouble getting inherited perf events to work on this code. So instead we will use a different
feature of PAPI, which is gathering timing values.

If using your own code, you can comment out the code that creates the eventset and starts/stops
it, we won’t be needing that.

With PAPI you can gather a current timestamp with microsecond granularity via
PAPI_get_real_usec().

To measure how long a routine is, just measure the timestamp before and after, then subtract.
The value is a 64-bit one, so make sure you assign it to a value of type 1long long and print it
using the "$11d" optionin printf ().

Have your code measure the total convolution time, the combine time, and the 1oad_jpeqg ()
and store_jpeqg () times and print the results to the screen.

5. Something Cool (1 point)

This can be complicated to get working

Instead of doing simple 2-thread parallelism, parallelize the entire code base at a fine-grained
level.

Copy your sobel_coarse.c file over sobel_fine.c and then modify sobel_fine.c

Split up each operation into N number of parts, where N is configurable. Each element of the
sobel operation is independent, so you can split up the input image into arbitrary sizes (say 8 for
this example). Create 8 threads, run sobel_x in parallel (each on 1/8th), join when done. Do the
same for sobel_y and for combine.

If your image is not an integer multiple of N you will need to have fixup code at the end to make
sure the edges get processed properly.

Record the total time (using time) as well as the PAPI timing measurements for 1, 2, 4, and 8
threads in the README file.

6. Submitting your work.

Be sure to edit the README to include your name, as well as the timing results, and any notes
you want to add about your something cool.

Run make submit and it should create a file called hw05_submit.tar.gz. E-mail this
file to me.

e-mail the file to me by the homework deadline.

