
ECE 574 – Cluster Computing
Lecture 3

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 January 2017

http://web.eece.maine.edu/~vweaver


Announcements

• HW#1 graded. Everyone got full credit, won’t send out

actual grades. Liked the extra details on the clusters

• Handing out accounts on Haswell-EP for HW#3. Please

use the machine responsibly.

1



HW#2 Review

• Sunway Top#1 Article

◦ One way they save power? Low-power DDR3 RAM

◦ Linpack: 74% efficient, HPCP: 0.3% efficient

◦ US exaflop? Early 2020s

• Next Gen Computer Article

◦ Does calculation use most energy? No, data

movement.

◦ Did we hit DARPA exascale in 2015 goal? No

◦ When will we hit exascale? 2023

2



• Reliability Article

◦ Jaguar: 350 errors/min

◦ BGQ: problems from radioactive lead in solder

◦ Power gating: reduces life of chip, can cause surges

3



Average Machine Speeds

• Look up my top40 list. Green and regular. Compare

with top and bottom of top500. Also Pi-cluster

• Computers we might use in class:

haswell-ep server 436 GFLOPS, 16/32 cores, 80GB,

2.13GFLOP/W

power8 machine 195 gflops, 8/64 cores, 32GB, ??

pi-cluster, 15.4 GFLOPS, 96 cores, 24GB RAM, 0.166

GFLOP/W

pi-3B 3.62 GFLOPS, 4 cores, 1GB RAM, 0.813

4



GFLOP/W (higher possible)

Reminder, top machine, 93 PFLOPS, sunway,

6GFLOPS/W (top 10 3-9 GFLOPS/W)

• First list, June 1993. Top machine 1024 cores, 60

GFLOPS, 131kW

Pi cluster would have been #7

5



Review of Weak/Strong Scaling

6



Where Performance Info Comes From

• User Level (instrumentation)

• Kernel Level (kernel metrics)

• Hardware Level (performance counters)

7



Types of Performance Info

• Aggregate counts – total counts of events that happen

• Profiles – periodic snapshots of program behavior, often

providing statistical representations of where program

hotspots are

• Traces – detailed logs of program behavior over time

8



Gathering Aggregate Counts

9



Measuring runtime – using time

$ time ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

real 0m7.360s

user 0m7.330s

sys 0m0.000s

• Real – wallclock time

• User – time the program is actually running (how

calculated)

• Sys – time spent in the kernel

10



• Must USER+SYS = REAL? Not necessarily (what if

other things using the kenrel)

• Can USER be greater than REAL? yes, if multiprocessor

• Is the time command deterministic?

No. Lots of noise in a system. Can write whole papers

on why.

• Which do you use in speedup calculations?

11



perf tool
$ perf stat ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

Performance counter stats for ’./dgemm_naive 200’:

7239.152263 task-clock (msec) # 0.992 CPUs utilized

116 context-switches # 0.016 K/sec

0 cpu-migrations # 0.000 K/sec

357 page-faults # 0.049 K/sec

6,513,184,942 cycles # 0.900 GHz

<not supported> stalled-cycles-frontend

<not supported> stalled-cycles-backend

2,592,685,475 instructions # 0.40 insns per cycle

91,797,411 branches # 12.681 M/sec

974,817 branch-misses # 1.06% of all branches

7.299463710 seconds time elapsed

12



• Many options. Can select events with -e

• Use perf list to list all available events

• Hundreds of events available on x86, not quite so many

on ARM.

• Understanding the results often requires a certain

knowledge of computer architecture.

13



Profiling

• Records summary information during execution

• Usually Low Overhead

• Implemented via Sampling (execution periodically

interrupted and measures what is happening) or

Measurement (extra code inserted to take readings)

14



Profiling Tools

• Low Overhead – Using hardware counters, such as perf

• Small Overhead – Using static instrumentation, such as

gprof

• Large Overhead – Using dynamic binary instrumentation,

such as valgrind callgrind

15



Compiler Profiling

• gprof

• gcc -pg

• Adds code to each function to track time spent in each

function.

• Run program, gmon.out created. Run “gprof

executable” on it.

• Adds overhead, not necessarily fine-tuned, only does

time based measurements.

• Pro: available wherever gcc is.

16



Perf Profiling

Automatically interrupts program and takes sample every

X instructions.

• perf record

• perf annotate

17



Skid

• Beware of “skid” in sampled results

• This is what happens when a complex processor cannot

stop immediately, so the reported instruction might be

off by a few instructions.

• Some processors do not have this problem. Recent Intel

processors have special events that can compensate for

this.

18



Tracing

• When and where events of interest took place

• Shows when/where messages sent/received

• Records information on significant events

• Provides timestamps for events

• Trace files are typically *huge*

• When doing multi-processor or multi-machine tracing,

hard to line up timestamps

19



Performance Data Analysis

Manual Analysis
• Visualization, Interactive Exploration, Statistical

Analysis

• Examples: TAU, Vampir

Automatic Analysis
• Try to cope with huge amounts of data by automatic

analysis

• Examples: Paradyn, KOJAK, Scalasca, Perf-expert

20


