
ECE 574 – Cluster Computing
Lecture 4

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 January 2017

http://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget about homework #3

• I ran HPCG benchmark on Haswell-EP machine.

Theoretical: 16DP FLOP/cycle * 16 cores * 2.6GHz

= 666 GFLOPS

Linpack/OpenBLAS: 436 GFLOPS (65% of peak),

HPCG: 0.7 GFLOPS (0.1% of peak)
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Running Linpack

• HPL solves linear system of equations, Ax=b. LU

factorization.

• Download and install a BLAS. ATLAS? OpenBLAS?

Intel?

Compiler? intel? gcc? gfortran?

• Download and install MPI (we’ll talk about that later).

MPICH? OpenMPI?

• Download HPL. Current version 2.2?

Modify a Makefile (not trivial) make sure links to proper
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BLAS. make arch=OpenBLAS

• Above step, might need to create a link from hpl in your

home directory to actual location for reasons

• Create a a bin/OpenBLAS with default HPL.dat file

• Run it ./xhpl Or if on cluster ./mpirun -np 4

./xhpl or similar.

• Result won’t be very good. Need to tune HPL.dat

• N is problem size. In general want this to fill RAM. Take

RAM size, squareroot, round down. NxN matrix. Each

N is 8 bytes for double precision.

• NB block size, can be tuned
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• PxQ, if on cluster can specify machine grid to work on.

Linpack works best with as square as possible.

• Fiddle with all the results until you get the highest.
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Commodity Cluster Layout
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• Simple cluster like the pi-cluster, or older ones I’ve made

• Commodity cluster design is a combo of

ECE331/ECE435 more than anything else
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• Why have a head node?

• What kind of network? Ethernet? Inifiniband?

Something fancier?

• Operating system? Do all nodes need a copy of the OS?

Linux? Windows? None?

• Booting: network boot, local disk boot.

• Network topology? Star? Direct-connect? Cube?

Hyper-cube?

• Disk: often shared network filesystem. Why? Simple:

NFS (network file system). More advanced cluster

filesystems available.
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• Don’t forget power/cooling

• Running software?
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Job Schedulers

• On a big cluster, how do you submit jobs?

• If everyone just logged in to nodes at random, would be

a mess

• Batch job scheduling

• Different queues (high priority, long running, etc)

• Resource management (make sure don’t over commit,

use too much RAM, etc)

• Notify you when finished?

• Accounting (how much time used per user, who is going
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to pay?)
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Scheduling

• Different Queues Possible – Low priority? Normal? High

priority (paper deadline)? Friends/Family?

• FIFO – first in, first out

• Backfill – bypass the FIFO to try to efficiently use any

remaining space

• Resources – how long can run before being killed, how

many CPUs, how much RAM, how much power? etc.
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• Heterogeneous Resources – not all nodes have to be

same. Some more cores, some older processors, some

GPUs, etc.
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Common Job Schedulers

• PBS (Portable Batch System) – OpenPBS/PBSPro/TORQUE

• nbs

• slurm

• moab

• condor

• many others
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Slurm

• http://slurm.schedmd.com/

• Slurm Workload Manager

Simple Linux Utility for Resource Management

Futurama Joke?

• Developed originally at LLNL

• Over 60% of top 500 use it
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sinfo

provides info on the cluster

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

debug up infinite 1 idle haswell-ep

general* up infinite 1 idle haswell-ep
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srun

start a job, but interactively
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sbatch

submit job to job queue

#!/bin/bash

#SBATCH -p general # partition (queue)

#SBATCH -N 1 # number of nodes

#SBATCH -n 8 # number of cores

#SBATCH -t 0-2:00 # time (D-HH:MM)

#SBATCH -o slurm.%N.%j.out # STDOUT

#SBATCH -e slurm.%N.%j.err # STDERR

export OMP_NUM_THREADS=4

./xhpl
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squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

63 general time_hpl ece574-0 PD 0:00 1 (Resources)

64 general time_hpl ece574-0 PD 0:00 1 (Resources)

65 general time_hpl ece574-0 PD 0:00 1 (Resources)

62 general time_hpl ece574-0 R 0:14 1 haswell-ep
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scancel

kills job

scancel 65
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Some sample code

int x[8][8];

for(i=0;i<8;i++) {

for(j=0;j<8;j++) {

x[i][j]=0;

}

}
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mov r0 ,0 ; i

i_loop:

mov r1 ,0 ; j

j_loop:

mov r3 ,0

mov r4 ,x

add r4 ,r4 ,r1 ,lsl#5

add r4 ,r4 ,r0 ,lsl#3

str r3 ,[r4]

add r1 ,r1 ,#1

cmp r1 ,8

blt j_loop

add r0 ,r0 ,#1

cmp r0 ,8

blt i_loop
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Parallel Computing – Single Core
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Simple CPUs

• Ran one instruction at a time.

• Could take one or multiple cycles (IPC 1.0 or less)

• Example – single instruction take 1-5 cycles?

ALU

PC

Control

CPU

Memory Regs
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Pipelined CPUs

• 5-stage MIPS pipeline

• From 2-stage to Pentium 4 31-stage

• Example – single instruction always take 5 cycles? But

what about on average?

IF ID EX MEM WB

23



Pipelined CPUs

• IF = Instruction Fetch.

Fetch 32-bit instruction from L1-cache

• ID = Decode

• EX = execute (ALU, maybe shifter, multiplier, divide)

Memory address calculated

• MEM = Memory – if memory had to be accessed,

happens now.

• WB = register values written back to the register file
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Data Hazards

Happen because instructions might depend on results from

instructions ahead of them in the pipeline that haven’t been

written back yet.

• RAW – “true” dependency – problem. Bypassing?

• WAR – “anti” dependency – not a problem if commit in

order

• WAW – “output” dependency – not a problem as long

as ordered

• RAR – not a problem
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Structural Hazards

• CPU can’t just provide. Not enough multipliers for

example
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Control Hazards

• How quickly can we know outcome of a branch

• Branch prediction? Branch delay slot?
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Branch Prediction

• Predict (guess) if a branch is taken or not.

• What do we do if guess wrong? (have to have some way

to cancel and start over)

• Modern predictors can be very good, greater than 99%

• Designs are complex and could fill an entire class
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Memory Delay

• Memory/cache is slow

• Need to bubble / Memory Delay Slot
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The Memory Wall

• Wulf and McKee

• Processors getting faster more quickly than memory

• Processors can spend large amounts of time waiting for

memory to be available

• How do we hide this?
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Caches

• Basic idea is that you have small, faster memories that

are closer to the CPU and much faster

• Data from main memory is cached in these caches

• Data is automatically brought in as needed.

Also can be pre-fetched, either explicitly by program or

by the hardware guessing.

• What are the downsides of pre-fetching?

• Modern systems often have multiple levels of cache.

Usuall a small (32k or so each) L1 instruction and data,

31



a larger (128k?) shared L2, then L3 and even L4.

• Modern systems also might share caches between

processors, more on that later

• Again, could teach a whole class on caches
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