
ECE 574 – Cluster Computing
Lecture 4

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 January 2017

http://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget about homework #3

• I ran HPCG benchmark on Haswell-EP machine.

Theoretical: 16DP FLOP/cycle * 16 cores * 2.6GHz

= 666 GFLOPS

Linpack/OpenBLAS: 436 GFLOPS (65% of peak),

HPCG: 0.7 GFLOPS (0.1% of peak)

1



Running Linpack

• HPL solves linear system of equations, Ax=b. LU

factorization.

• Download and install a BLAS. ATLAS? OpenBLAS?

Intel?

Compiler? intel? gcc? gfortran?

• Download and install MPI (we’ll talk about that later).

MPICH? OpenMPI?

• Download HPL. Current version 2.2?

Modify a Makefile (not trivial) make sure links to proper

2



BLAS. make arch=OpenBLAS

• Above step, might need to create a link from hpl in your

home directory to actual location for reasons

• Create a a bin/OpenBLAS with default HPL.dat file

• Run it ./xhpl Or if on cluster ./mpirun -np 4

./xhpl or similar.

• Result won’t be very good. Need to tune HPL.dat

• N is problem size. In general want this to fill RAM. Take

RAM size, squareroot, round down. NxN matrix. Each

N is 8 bytes for double precision.

• NB block size, can be tuned

3



• PxQ, if on cluster can specify machine grid to work on.

Linpack works best with as square as possible.

• Fiddle with all the results until you get the highest.

4



Commodity Cluster Layout

...

Compute Nodes

Compile Node
Login/

N
e
tw

o
rk

Storage

• Simple cluster like the pi-cluster, or older ones I’ve made

• Commodity cluster design is a combo of

ECE331/ECE435 more than anything else

5



• Why have a head node?

• What kind of network? Ethernet? Inifiniband?

Something fancier?

• Operating system? Do all nodes need a copy of the OS?

Linux? Windows? None?

• Booting: network boot, local disk boot.

• Network topology? Star? Direct-connect? Cube?

Hyper-cube?

• Disk: often shared network filesystem. Why? Simple:

NFS (network file system). More advanced cluster

filesystems available.

6



• Don’t forget power/cooling

• Running software?

7



Job Schedulers

• On a big cluster, how do you submit jobs?

• If everyone just logged in to nodes at random, would be

a mess

• Batch job scheduling

• Different queues (high priority, long running, etc)

• Resource management (make sure don’t over commit,

use too much RAM, etc)

• Notify you when finished?

• Accounting (how much time used per user, who is going

8



to pay?)

9



Scheduling

• Different Queues Possible – Low priority? Normal? High

priority (paper deadline)? Friends/Family?

• FIFO – first in, first out

• Backfill – bypass the FIFO to try to efficiently use any

remaining space

• Resources – how long can run before being killed, how

many CPUs, how much RAM, how much power? etc.

10



• Heterogeneous Resources – not all nodes have to be

same. Some more cores, some older processors, some

GPUs, etc.

11



Common Job Schedulers

• PBS (Portable Batch System) – OpenPBS/PBSPro/TORQUE

• nbs

• slurm

• moab

• condor

• many others

12



Slurm

• http://slurm.schedmd.com/

• Slurm Workload Manager

Simple Linux Utility for Resource Management

Futurama Joke?

• Developed originally at LLNL

• Over 60% of top 500 use it

13

http://slurm.schedmd.com/


sinfo

provides info on the cluster

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

debug up infinite 1 idle haswell-ep

general* up infinite 1 idle haswell-ep

14



srun

start a job, but interactively

15



sbatch

submit job to job queue

#!/bin/bash

#SBATCH -p general # partition (queue)

#SBATCH -N 1 # number of nodes

#SBATCH -n 8 # number of cores

#SBATCH -t 0-2:00 # time (D-HH:MM)

#SBATCH -o slurm.%N.%j.out # STDOUT

#SBATCH -e slurm.%N.%j.err # STDERR

export OMP_NUM_THREADS=4

./xhpl

16



squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

63 general time_hpl ece574-0 PD 0:00 1 (Resources)

64 general time_hpl ece574-0 PD 0:00 1 (Resources)

65 general time_hpl ece574-0 PD 0:00 1 (Resources)

62 general time_hpl ece574-0 R 0:14 1 haswell-ep

17



scancel

kills job

scancel 65

18



Some sample code

int x[8][8];

for(i=0;i<8;i++) {

for(j=0;j<8;j++) {

x[i][j]=0;

}

}

19



mov r0 ,0 ; i

i_loop:

mov r1 ,0 ; j

j_loop:

mov r3 ,0

mov r4 ,x

add r4 ,r4 ,r1 ,lsl#5

add r4 ,r4 ,r0 ,lsl#3

str r3 ,[r4]

add r1 ,r1 ,#1

cmp r1 ,8

blt j_loop

add r0 ,r0 ,#1

cmp r0 ,8

blt i_loop

20



Parallel Computing – Single Core

21



Simple CPUs

• Ran one instruction at a time.

• Could take one or multiple cycles (IPC 1.0 or less)

• Example – single instruction take 1-5 cycles?

ALU

PC

Control

CPU

Memory Regs

22



Pipelined CPUs

• 5-stage MIPS pipeline

• From 2-stage to Pentium 4 31-stage

• Example – single instruction always take 5 cycles? But

what about on average?

IF ID EX MEM WB

23



Pipelined CPUs

• IF = Instruction Fetch.

Fetch 32-bit instruction from L1-cache

• ID = Decode

• EX = execute (ALU, maybe shifter, multiplier, divide)

Memory address calculated

• MEM = Memory – if memory had to be accessed,

happens now.

• WB = register values written back to the register file

24



Data Hazards

Happen because instructions might depend on results from

instructions ahead of them in the pipeline that haven’t been

written back yet.

• RAW – “true” dependency – problem. Bypassing?

• WAR – “anti” dependency – not a problem if commit in

order

• WAW – “output” dependency – not a problem as long

as ordered

• RAR – not a problem

25



Structural Hazards

• CPU can’t just provide. Not enough multipliers for

example

26



Control Hazards

• How quickly can we know outcome of a branch

• Branch prediction? Branch delay slot?

27



Branch Prediction

• Predict (guess) if a branch is taken or not.

• What do we do if guess wrong? (have to have some way

to cancel and start over)

• Modern predictors can be very good, greater than 99%

• Designs are complex and could fill an entire class

28



Memory Delay

• Memory/cache is slow

• Need to bubble / Memory Delay Slot

29



The Memory Wall

• Wulf and McKee

• Processors getting faster more quickly than memory

• Processors can spend large amounts of time waiting for

memory to be available

• How do we hide this?

30



Caches

• Basic idea is that you have small, faster memories that

are closer to the CPU and much faster

• Data from main memory is cached in these caches

• Data is automatically brought in as needed.

Also can be pre-fetched, either explicitly by program or

by the hardware guessing.

• What are the downsides of pre-fetching?

• Modern systems often have multiple levels of cache.

Usuall a small (32k or so each) L1 instruction and data,

31



a larger (128k?) shared L2, then L3 and even L4.

• Modern systems also might share caches between

processors, more on that later

• Again, could teach a whole class on caches

32


