
ECE 574 – Cluster Computing
Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

7 February 2017

Announcements

• Homework #4 was posted. Can work in groups of two.

Don’t put it off until the last minute!

1

Homework #3 Review

• 2

◦ 2a) 146 89 61 48

2:26 1:19 1:01 0:48

◦ 2b) Speedup: (to/tn) 1.6 2.4 3.0

◦ 2c) Parallel effic: (Sp/p or T1/pTp) 82% 60% 40%

◦ 2d) Yes, time decreases as you add cores.

Not ideal strong scaling though.

◦ 2e) No weak, didn’t test with sizes constant

• 3

2

◦ 3a) dgemm kerenel (double-precision generic matrix-

matrix multiply. algorithm kernel (core) not Linux

kernel)

◦ 3b) vmovups (truncated) (memcpy?)

◦ 3c) skid

3

Homework #3 More

Why does it drop off at 8?

If ideal strong scaling, then parallel efficiency would be

closer to 1. Not enough results for weak scaling.

What is the worst case parallel efficiency (i.e. a single-

threaded program so adding more cores does not help?).

Is this truly the worst-case?

Perf record, make sure running it on benchmark, i.e. perf

record ./xhpl

If you run on time, or the shell script you will still get

4

the right results because perf by default follows all child

processes. However if you run on sbatch, it won’t work, as

sbatch quickly sets things up and notifies the scheduling

daemon via a socket connection to start things, then exits.

In that case perf will only measure sbatch and not your

actual benchmark run.

perf report will show a profiling breakdown at the
function level:

Samples: 688K of event ’cycles’, Event count (approx.): 565000306359

Overhead Command Shared Object Symbol

70.74% xhpl xhpl [.] dgemm_kernel

9.77% xhpl xhpl [.] HPL_lmul

1.88% xhpl xhpl [.] HPL_rand

5

1.74% xhpl xhpl [.] HPL_dlaswp00N

1.29% xhpl xhpl [.] HPL_ladd

1.29% xhpl xhpl [.] HPL_pdlange

1.14% xhpl [kernel.vmlinux] [k] entry_SYSCALL_64

Pressing enter or using perf annotate will show at the
asm level:

0.02 c0: vmovups (%rdi),%ymm1

0.72 vmovups 0x20(%rdi),%ymm2

0.07 vmovups (%r15),%ymm3

1.48 vmovups %ymm1,(%rsi)

0.02 vmovups %ymm2,0x20(%rsi)

0.02 vmovups %ymm3,0x40(%rsi)

move unaligned packed 256-bits from memory to register (single precision?)

memory copy? By default uses :ppp to reduce skid

6

Types of Clusters

• Shared-memory: many CPUs, but one shared memory

address space. Usually one copy of operating system.

When write to memory, all CPUs can see it.

• Distributed: man systems spread across network. Each

has own memory. For other CPUs to see data have to

send message across network.

7

Multicore Systems

• CMP (Chip-multiprocessor) or SMP (Symmetric-

multiprocessor)

• Multiple processors in system. More on this later.

8

CMP Diagram

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

9

Hardware Multi-Threading

• Idea is to re-use a pipeline to execute multiple threads

at once, *without* fully replicating the entire CPU (so

less than multicore)

• You will have to replicate some things (program counter

for each, etc)

• Usually they appear to the CPU as full separate

processors even though they are not.

• Various ways to do this:

10

◦ Fine-grained – rotate threads every cycle

◦ Coarse-grained – rotate threads only if long latency

event happens (cache miss)

◦ Simultaneous – issue from any combination of threads,

to maximize use of pipeline (have to be superscalar)

• Why do this? Often on superscalar running only one

thread will leave parts idle, try to make use of these.

• Bad side effects?

Can actually slow down code (especially if both threads

11

trying to use same functional units, also if both using

memory heavily as cache is often shared)

• Sometimes see it talked about as SMT (Simultaneous

Multithreading), Intel Hyperthreading is more or less the

same thing

12

SMT Diagram

PC
Ins Queue

PC
Ins Queue

PC
Ins Queue

13

Cache Coherency

• How do you handle data being worked on by multiple

processors, each with own cache of main memory?

• Cache coherency protocols.

• Many and varied. MESI is a common one

• Directory vs Snoopy

14

MESI

• Modified, Exclusive, Shared, Invalid

15

Barriers and Ordering

• On modern out-of-order execution, memory accesses can

happen out-of-order

• Sequential consistency – all happen in order

• Strong consistency – stores

• Weak consistency – can be arbitrarily reordered, only

barriers protect you

• A memory barrier instruction makes sure all previous

16

loads/stores finish before moving on

• Most important for things like locks, as well as memory-

mapped I/O

17

Ordering Example
y1=0

y2=0

y1=3

y2=4

Another core

x1=y1

x2=y2

What values of x1 and x2 can you get?

Strong:

x1=0,x2=0

x1=3,x2=0

x1=3,x2=4

Weak:

x1=0,x2=4

18

Haswell EP Setup

CPU0

CPU1

CPU2

CPU3 CPU4

CPU5

CPU6

CPU7LLC0

LLC1

LLC2

LLC3 LLC4

LLC5

LLC6

LLC7

DIMM3

DIMM2

DIMM1

DIMM0

Home Agent
Mem Controller

QPI
PCIe

19

NUMA

Non-uniform memory access – some accesses will have to

cross to other processors, causing extra delay. How can

you optimize this?

20

Traditional NUMA Layout

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

21

Parallel Programming!

• Simplest: process based. Just have multiple (maybe

unrelated) processing running on system. Parallel make.

Usually can scale as long as you have processes to

run (but do most people ever have more than 2-4?

Web-browser, virus scan, camera ap, virus?). Can

communicate between separate processes but is slow,

poor interfaces. But can run equivelent of distributed

system on a shared-memory computer.

• Next: thread based. When you take a single program

22

and spread it across multiple cores.

23

