
ECE 574 – Cluster Computing
Lecture 7

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 February 2017



Announcements

• Too many snow days

• Will post a video of this lecture

1



Homework #4 Review

2



General Comments

• Comment your code!

• Don’t ignore compiler warnings!

• Issues I saw:

◦ Make sure stay in bounds of array

We are iterating 1 to x-1 not 0 to x

◦ You need to saturate to 255 in combine function too

sqrt(255*255+255*255) is greater than 255.

If you wrap around in 8-bits your results will be off.

◦ Check errors on PAPI!

3



Not the best interface, but it will let you know if adding

improper events.

4



General C array Comment

• Why a linear array and not multidimensional?

C doesn’t do dynamically sized multi-dimensional well

• It’s all a fiction anyway. You always get a linear array.

The multiply/add we are doing is what the compiler does

behind the scenes.

• You might think the whole multiply/add stuff would

kill performance, but the compiler can often reduces it

to just one CPU instruction on x86 (the magical load

effective address lea instruction

5



Butterfinger Results

Butterfinger was a pet guinea pig from long ago.

time ./sobel ./butterfinger.jpg

output_width=320, output_height=320, output_components=3

SOBELX L3 CACHE MISSES: 1554 CYCLES 9436089

SOBELY L3 CACHE MISSES: 0 CYCLES 9362614

COMBINE L3 CACHE MISSES: 3 CYCLES 6574264

real 0m0.048s user 0m0.024s sys 0m0.004s

6



• Why 0 cache misses for SOBELY?

Cache. 320*320*3=307k

IN, SOBEL X, SOBEL Y, COMBINED, so 300k*4 =

1.2MB or so

• Haswell-EP has 20MB of L3 cache

• Reading causes misses to read input in, rest are writing

out so while not necessarily hits, with write allocate

cache do not seem to be accounted for as misses

7



Brief Cache Overview

• Haswell-EP caches

memory – 200+ cycles best case 20MB of L3, 20MB,

64B/line (30-60 cycles?)

256kB per-core L2, 64B/line, 8-way (12-cycles)

32kB per-core L2, 64B/line, 8-way (4 cycles)

• Chunks of fast memory close to CPU

• Multiple levels

• Memory broken up into cacheline sized chunks (64-byte

8



on HSW-EP)

• When access an address, all 64-B brought in even if not

need rest

• When cache full, something is kicked out to make room

(usually oldest)

• Want to take advantage of spatial and temporal locality

• With butterfinger all fits in L3 cache

9



Cake, Straight implementation of
pseudo-code

Yes, boring image, but just happened to be a high-res

image I had around.

time ./sobel ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3

SOBELX L3 CACHE MISSES: 713,241 CYCLES 1,554,165,544

SOBELY L3 CACHE MISSES: 697,464 CYCLES 1,539,635,869

COMBINE L3 CACHE MISSES: 1,252,635 CYCLES 1,182,455,505

real 0m1.601s user 0m1.476s sys 0m0.072s

10



perf report

61.65% sobel sobel [.] generic_convolve

23.45% sobel sobel [.] main

1.11% sobel [kernel.kallsyms] [k] clear_page_c_e

0.51% sobel libjpeg.so.62.2.0 [.] jpeg_fill_bit_buffer

0.51% sobel [kernel.kallsyms] [k] page_fault

perf annotate

sum += filter[0][2]*(input_image->p

0.61 movslq %r11d,%r11

0.66 movzbl (%rcx,%r11,1),%esi

convert():

return (y*xsize*depth)+(x*depth)+color;

42.22 lea (%r9,%rbx,1),%r11d

generic_convolve():

11



• converts down to one instruction

• skid? probably the memory load previously is the problem

(lea is just a shift/add)

• 3888*2952=10M*3, 30MB (larger than L3)

12



Loop Order Optimization

• How is an array laid out in memory?

Row-major (C) vs Column-major (Fortran)

• Default with loop x then y, are actually walking columns.

Worst case.

• Switch order of loops, things get a lot better.

time ./sobel_improved ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3

SOBELX L3 CACHE MISSES: 21,246 CYCLES 882,000,608

SOBELY L3 CACHE MISSES: 19,556 CYCLES 881,998,207

COMBINE L3 CACHE MISSES: 1,241,446 CYCLES 1,183,759,970

real 0m1.181s user 0m1.112s sys 0m0.052s

13



Loop Unrolling

• Loop unrolling. Unroll the color loop (explicitly do the

three things 0, 1, 2 and put the values in.

• Can have benefits. Change all occurences of “color” to

be a constant, which can be optimized.

• Remove branches, which can be slow or mispredicted.

• More code for out-of-order processor to work with and

try to do in parallel.

• Downsides: too large: no longer fit in instruction cache

or loop stream detector.

14



Other Optimizations

• Other optimizations, often are things the compiler does

for you with -O2.

• Hoisting (move things out of loop that only need to be

done once)

• Simplification. Lots of things.

• Take a compiler class.

15



Convert to one single Loop

No need to iterate X and Y and Color, just walk through

output linearly. Really you have three pointers of input

(line above, current line, below).

time ./sobel_improved ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3

SOBELX L3 CACHE MISSES: 15,703 CYCLES 411,148,087

SOBELY L3 CACHE MISSES: 15,334 CYCLES 411,284,853

COMBINE L3 CACHE MISSES: 1,245,842 CYCLES 1,186,204,125

real 0m0.924s user 0m0.848s sys 0m0.044s

16



Same for Combine

No need to offset, just start at beginning of x and y and

write to output, doing the combine operation.

time ./sobel_improved ./IMG_1733.JPG output_width=3888, output_height=2592, out$

L3 CACHE MISSES: 16,188 CYCLES 410,983,833

L3 CACHE MISSES: 14,850 CYCLES 411,059,831

L3 CACHE MISSES: 36,652 CYCLES 496,394,104

real 0m0.690s

user 0m0.628s

sys 0m0.040s

17



ISRA= interprocedural scalar replacement of aggregates,

39.71% sobel_improved sobel_improved [.] generic_convolve.isra.0

24.51% sobel_improved sobel_improved [.] main

2.41% sobel_improved [kernel.kallsyms] [k] clear_page_c_e

1.23% sobel_improved libjpeg.so.62.2.0 [.] jpeg_fill_bit_buffer

1.02% sobel_improved libjpeg.so.62.2.0 [.] 0x0000000000039356

0.83% sobel_improved [kernel.kallsyms] [k] page_fault

18



SIMD (SSE/AVX)

• SIMD = Single Instruction, multiple data

One instruction (say add) can add multiple values at

once

• On intel chips SSE, SSE2, etc. Up to AVX/AVX2 on

newer systems

• 256-bit wide registers. So sixteen 16-bit values (can do

integer), Four 64-bit doubles, etc.

19



• Large number of these registers, xmm0 (128bit) ymm0

(256bit) zmm0 (512bit on newer machines)

• One way is to program in assembly language with some

obscure opcodes: an example PMADDWD 16-bit integer

parallel 128-bit multiply and add

• On recent gcc and other compilers there are “intrinsics”

to use in C, for example you can use mm madd epi16()

to do a PMADDWD instruction

20



Initial SIMD try

9 values from the three input pointers (16-bit)

A B C X D E F X G H I X X X X X

The sobel filter values (16-bit)

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

Multiply and add all in parallel

A1+B2 C3+0 D4+E5 F6+0 G7+H8 I9+00 0+0 0+0

Rearrange and then do a "horizontal add"

A1+B2+G7+H8 C3+I9 D4+E5 F6+0

Another Horizontal Add

0 0 A1+B2+G7+H8+C3+I9 D4+E5+F6

Another Horizontal Add

0 0 0 A1+B2+G7+H8+C3+I9+D4+E5+F6

Convert to 16-bit result, saturate, and be done

The 18 ops (9mul/9add) turned into 4 ops

21



Problems

• Math is very fast, handfull of instructions

• Problem is getting memory from 3 pointers with 3-byte

offsets into registers

• This is a “scatter/gather” problem found often with

SIMD (and GPU)

• There are instructions to try to gather the values

together, but not really suited for this

• Once you do it manually performance is actually worse

than regular code

22



• Challenge: if picture not multiple of 16-bytes

23



Improved SIMD – Can we do better?

With many problems: re-think outside the serial box

Load full 16 bytes of pixel info from the three pointers,

multiply by the 9 values in sobel filter, shifting right by 3

A * RGB RGB RGB RGB RGB RGB R

B * RGB RGB RGB RGB RGB R

C * RGB RGB RGB RGB R

D * RGB RGB RGB RGB RGB RGB R

E * RGB RGB RGB RGB RGB R

F * RGB RGB RGB RGB R

G * RGB RGB RGB RGB RGB RGB R

H * RGB RGB RGB RGB RGB R

+ I * RGB RGB RGB RGB R

===================================

RGB RGB RGB RGB R 13 values of result

Use compare instruction to saturate in parallel

Store out the 13 bytes at once

So (18*13) operations reduced to (~20) I think. Still haven’t tried this yet

24


