ECE 574 — Cluster Computing
Lecture ¢

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 February 2017

Announcements

e Too many snow days

e Will post a video of this lecture

Homework #4 Review

General Comments

e Comment your code!
e Don't ignore compiler warnings!
e Issues | saw:
o Make sure stay in bounds of array
We are iterating 1 to x-1 not 0 to x
o You need to saturate to 255 in combine function too
sqrt(255*255+4-255*255) is greater than 255.
If you wrap around in 8-bits your results will be off.
o Check errors on PAPI!

-y 3

Not the best interface, but it will let you know if adding
Improper events.

General C array Comment

e \WWhy a linear array and not multidimensional?

C doesn’'t do dynamically sized multi-dimensional well

e It's all a fiction anyway. You always get a linear array.
The multiply/add we are doing is what the compiler does
behind the scenes.

e You might think the whole multiply/add stuff would
kill performance, but the compiler can often reduces it
to just one CPU instruction on x86 (the magical load
effective address lea instruction

-y 5

Butterfinger Results

Butterfinger was a pet guinea pig from long ago.

time ./sobel ./butterfinger.jpg
output_width=320, output_height=320, output_components=3
SOBELX L3 CACHE MISSES: 1554 CYCLES 9436089

SOBELY L3 CACHE MISSES: O CYCLES 9362614
COMBINE L3 CACHE MISSES: 3 CYCLES 6574264
real Om0.048s user Om0.024s sys OmO.004s

e WWhy 0 cache misses for SOBELY?
Cache. 320*320*3=307k
IN, SOBEL_X, SOBEL_Y, COMBINED, so 300k*4 =
1.2MB or so

e Haswell-EP has 20MB of L3 cache

e Reading causes misses to read input in, rest are writing
out so while not necessarily hits, with write allocate
cache do not seem to be accounted for as misses

Brief Cache Overview

e Haswell-EP caches
memory — 2004+ cycles best case 20MB of L3, 20MB,
64B /line (30-60 cycles?)
256kB per-core L2, 64B/line, 8-way (12-cycles)
32kB per-core L2, 64B/line, 8-way (4 cycles)

e Chunks of fast memory close to CPU
e Multiple levels

e Memory broken up into cacheline sized chunks (64-byte

-y g

on HSW-EP)

e \When access an address, all 64-B brought in even if not
need rest

e When cache full, something is kicked out to make room
(usually oldest)

e \Want to take advantage of spatial and temporal locality

e With butterfinger all fits in L3 cache

Cake, Straight implementation of
pseudo-code

Yes, boring image, but just happened to be a high-res
image | had around.

time ./sobel ./IMG_1733.JPG
output_width=3888, output_height=2592, output_components=3

SOBELX L3 CACHE MISSES: 713,241 CYCLES 1,554,165,544
SOBELY L3 CACHE MISSES: 697,464 CYCLES 1,539,635,869
COMBINE L3 CACHE MISSES: 1,252,635 CYCLES 1,182,455,505
real Om1.601s user Oml1.476s sys Om0.072s

/Y 10

perf report

61.65% sobel sobel [.] generic_convolve
23.45%, sobel sobel [.] main

1.11%, sobel [kernel.kallsyms] [k] clear_page_c_e

0.51% sobel libjpeg.s0.62.2.0 [.] jpeg_fill_bit_buffer
0.51% sobel [kernel.kallsyms] [k] page_fault

perf annotate
sum += filter[0] [2]*(input_image->p

0.61 movslq %riid,%ril
0.66 movzbl (Y%rcx,%rll,1),%esi
convert():
return (y*xsizexdepth)+(x*depth)+color;
42 .22 lea (%r9,%rbx,1) ,%r11d

generic_convolve() :

e converts down to one instruction

e skid? probably the memory load previously is the problem
(lea is just a shift/add)

e 3888*%2952=10M*3, 30MB (larger than L3)

/Y 12

Loop Order Optimization

e How is an array laid out in memory?

Row-major (C) vs Column-major (Fortran)

e Default with loop x then vy, are actually walking columns.
Worst case.

e Switch order of loops, things get a lot better.

time ./sobel_improved ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3
SOBELX L3 CACHE MISSES: 21,246 CYCLES 882,000,608

SOBELY L3 CACHE MISSES: 19,556 CYCLES 881,998,207

COMBINE L3 CACHE MISSES: 1,241,446 CYCLES 1,183,759,970

real Oml.181s user Oml.112s sys OmO.052s

/Y 13

Loop Unrolling

e Loop unrolling. Unroll the color loop (explicitly do the
three things 0, 1, 2 and put the values in.

e Can have benefits. Change all occurences of “color” to
be a constant, which can be optimized.

e Remove branches, which can be slow or mispredicted.

e More code for out-of-order processor to work with and
try to do in parallel.

e Downsides: too large: no longer fit in instruction cache
or loop stream detector.

-y 14

Other Optimizations

e Other optimizations, often are things the compiler does
for you with -O2.

e Hoisting (move things out of loop that only need to be
done once)

e Simplification. Lots of things.

e Take a compiler class.

-y 15

Convert to one single Loop

No need to iterate X and Y and Color, just walk through
output linearly. Really you have three pointers of input
(line above, current line, below).

time ./sobel_improved ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3
SOBELX L3 CACHE MISSES: 15,703 CYCLES 411,148,087

SOBELY L3 CACHE MISSES: 15,334 CYCLES 411,284,853

COMBINE L3 CACHE MISSES: 1,245,842 CYCLES 1,186,204,125

real Om0.924s user Om0.848s sys OmO0.044s

/Y 16

Same for Combine

No need to offset, just start at beginning of x and y and
write to output, doing the combine operation.

time ./sobel_improved ./IMG_1733.JPG output_width=3888, output_height=2592, out$
L3 CACHE MISSES: 16,188 CYCLES 410,983,833
L3 CACHE MISSES: 14,850 CYCLES 411,059,831
L3 CACHE MISSES: 36,652 CYCLES 496,394,104

real OmO.690s

user OmO.628s
sSys OmO.040s

-y 17

ISRA= interprocedural scalar replacement of aggregates,

39.

24

O - = N

71%

.51%
419,
.23%
.02%
.83%

sobel_improved
sobel_improved
sobel_improved
sobel_improved
sobel_improved
sobel_improved

sobel_improved
sobel_improved
[kernel.kallsyms]
libjpeg.s0.62.2.0
libjpeg.s0.62.2.0
[kernel.kallsyms]

generic_convolve.isra.0
main

clear_page_c_e
jpeg_fill_bit_buffer
0x0000000000039356
page_fault

18

SIMD (SSE/AVX)

e SIMD = Single Instruction, multiple data
One instruction (say add) can add multiple values at
once

e On intel chips SSE, SSE2, etc. Up to AVX/AVX2 on
newer systems

e 256-bit wide registers. So sixteen 16-bit values (can do
integer), Four 64-bit doubles, etc.

-y 19

e Large number of these registers, xmmO0 (128bit) ymmO
(256bit) zmmO0 (512bit on newer machines)

e One way is to program in assembly language with some
obscure opcodes: an example PMADDWD 16-bit integer
parallel 128-bit multiply and add

e On recent gcc and other compilers there are “intrinsics”
to use in C, for example you can use _-mm_madd_epil6()
to do a PMADDWD Iinstruction

/Y 20

Initial SIMD try

9 values from the three input pointers (16-bit)
ABCXDEFXGHIXXXXX
The sobel filter values (16-bit)
1230456078900000
Multiply and add all in parallel
A1+B2 C3+0 D4+E5 F6+0 G7+H8 I9+00 0+0 0+0
Rearrange and then do a "horizontal add"
A1+B2+G7+H8 C3+I9 D4+E5 F6+0
Another Horizontal Add
0 0 A1+B2+G7+H8+C3+I9 D4+E5+F6
Another Horizontal Add
0 O O A1+B2+G7+H8+C3+I9+D4+E5+F6
Convert to 16-bit result, saturate, and be done

The 18 ops (9mul/9add) turned into 4 ops

21

Problems

e Math is very fast, handfull of instructions

e Problem is getting memory from 3 pointers with 3-byte
offsets into registers

e This is a “scatter/gather” problem found often with
SIMD (and GPU)

e There are Instructions to try to gather the values
together, but not really suited for this

e Once you do it manually performance is actually worse
than regular code

-y 2

e Challenge: if picture not multiple of 16-bytes

23

Improved SIMD - Can we do better?

With many problems: re-think outside the serial box

Load full 16 bytes of pixel info from the three pointers,
multiply by the 9 values in sobel filter, shifting right by 3
A x RGB RGB RGB RGB RGB RGB R

* RGB RGB RGB RGB RGB
* RGB RGB RGB RGB
* RGB RGB RGB RGB RGB RGB
* RGB RGB RGB RGB RGB
* RGB RGB RGB RGB
* RGB RGB RGB RGB RGB RGB
* RGB RGB RGB RGB RGB
k

H D QT MHEOOQW
p=v = = = v = =~ = ="

RGB RGB RGB RGB R 13 values of result
Use compare instruction to saturate in parallel
Store out the 13 bytes at once

So (18%13) operations reduced to (720) I think. Still haven’t tried this yet

