
ECE 574 – Cluster Computing
Lecture 10

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 February 2017

http://web.eece.maine.edu/~vweaver

Announcements

• Homework #5 was due.

• Homework #6 will be posted.

1

OpenMP

A few good references:

• https://computing.llnl.gov/tutorials/openMP/

• http://bisqwit.iki.fi/story/howto/openmp/

• http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

2

https://computing.llnl.gov/tutorials/openMP/
http://bisqwit.iki.fi/story/howto/openmp/
http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

OpenMP

• Goal: parallelize serial code by just adding a few compiler

directives here and there

• No need to totally re-write code like you would with

pthread or MPI

3

OpenMP Background

• Shared memory multi-processing interface

• C, C++ and FORTRAN

• Industry standard made by lots of companies

• OpenMP 1.0 came out in 1997 (FORTRAN) or 1998

(C), now version 4.0 (2013)

• gcc support “recently” donated, CLANG even newer

• gcc added support in 4.2 (OpenMP 2.5)

4.4 (OpenMP 3.0), 4.7 (OpenMP 3.1), 4.9 (OpenMP

4.0), 5.0 (Offloading)

4

OpenMP

• Master thread with Fork/Join methodology

• Can possibly have nested threads (implementation

dependent).

• Can possibly have dynamic num of threads

(implementation dependent)

• Relaxed consistency, threads can cache local variables,

so if you need memory to be consistent might need to

flush it.

5

OpenMP Interface

• Compiler Directives

• Runtime Library Routines

• Environment Variables

6

Compiler Support

• On gcc, pass -fopenmp

• C: #pragma omp

• FORTRAN: C$OMP or !$OMP

7

Compiler Directives

• Spawning a parallel region

• Dividing blocks of code among threads

• Distributing loop iterations between threads

• Serializing sections of code

• Synchronization of work among threads

8

Library routines

• Need to #include <omp.h>

• Getting and setting the number of threads

• Getting a thread’s ID

• Getting and setting threads features

• Checking in in parallel region

• Checking nested parallelism

• Locking

• Wall clock measurements

9

Environment Variables

• Setting number of threads

• Configuring loop iteration division

• Processor bindings

• Nested Parallelism settings

• Dynamic thread settings

• Stack size

• Wait policy

10

Simple Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

int main (int argc , char **argv) {

int nthreads ,tid;

/* Fork a parallel region , each thread having private copy of tid */

#pragma omp parallel private(tid)

{

tid=omp_get_thread_num ();

printf("\tInside of thread %d\n",tid);

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("This is the master thread , there are %d threads\n",

nthreads);

}

11

}

/* End of block , waits and joins automatically */

return 0;

}

12

Notes on the example

• PARALLEL directive creates a set of threads and leaves

the original thread the master, with tid 0.

• All threads will execute the code in parallel region

• There’s an implied barrier/join at end of parallel region.

Only the master continues after it.

• If any thread terminates in a parallel region, then all

threads will also terminate.

• You can’t goto into a parallel region.

• In C++ special rules on throw/catching

13

parallel directive
#pragma omp parallel [clause ...] newline

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

num_threads (integer -expression)

structured_block

14

if

• if – you can do a check if (i==0)

If true parallel threads are created, otherwise serially

• Why do this? Maybe it’s only worth parallelizing if N

greater than 16 due to overhead, can put if (N>16)

then

15

Variable Scope

• When you enter a parallel section, which variables are

thread-local and which ones are globally visible?

• By default shared, but there are times you want per-

thread data and not globally visible (loop indices for

one)

• You specify in the parallel block how you want all of the

variables to behave

◦ private – variables that are private. The value is

undefined at start and discarded at end

16

◦ shared – variables seen by all threads, all can be written

to. Value at end is whatever the last thread wrote to

it

◦ firstprivate – a variable inside a parallel section ends

up with the value it had before the parallel section

◦ lastprivate – a variable after the parallel section gets

the value from the last loop iteration

◦ copyin – you can declare special “Threadprivate”

values that hold their value across parallel sections.

Use this to copy the value in from the master thread.

• default – you can set to shared or none (more on C),

17

none means you have to explicitly share or private each

var (makes it easier to catch bugs but more tedious)

18

How many threads?

• Evaluation of the IF clause

• Setting of the NUM THREADS clause

• Use of the omp set num threads() library function

• Setting of the OMP NUM THREADS environment variable

• Implementation default – usually the number of CPUs

on a node, though it could be dynamic (see next bullet).

• Threads are numbered from 0 (master thread) to N-1

19

How do you actually share work?

Could do work with this, split things up manually by

having a lock/critical section and divide up work per-

thread. But easier way?

20

Work-sharing Constructs

• Must be inside of a parallel directive

◦ do/for (do is Fortran, for is C)

◦ sections

◦ single – only executed by one thread

◦ workshare – iterates over F90 array (Fortran90 only)

21

For Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

static char *memory;

int main (int argc , char **argv) {

int num_threads =1;

int mem_size =256*1024*1024; /* 256 MB */

int i,tid ,nthreads;

/* Set number of threads from the command line */

if (argc >1) {

num_threads=atoi(argv [1]);

}

/* allocate memory */

memory=malloc(mem_size);

if (memory ==NULL) perror("allocating memory");

22

#pragma omp parallel shared(mem_size ,memory) private(i,tid)

{

tid=omp_get_thread_num ();

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("Initializing %d MB of memory using %d threads\n",

mem_size /(1024*1024) , nthreads);

}

#pragma omp for schedule(static) nowait

for (i=0; i < mem_size; i++)

memory[i]=0 xa5;

}

printf("Master thread exiting\n");

}

Note: loop must be simple. Integer expressions (nothing

23

super fancy). Comparison must be only regular equals or

greater/less. Iterator must be simple increment/decrement

or add/subtract.

Loop iterator should be private. Why? What happens

if all threads could update a global iterator?

24

Do/For
#pragma omp for [clause ...] newline

schedule (type [,chunk])

ordered

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

reduction (operator: list)

collapse (n)

nowait

for_loop

25

Scheduling

• By default, splits to N size/p threads chunks statically.

• schedule (static,n) chunksize n

for example, if 10, and 100 size problem, 0-9 CPU 1,

10-19 CPU 2, 20-29 CPU3, 30-39 CPU4, 40-49 CPU1.

• But what if some finish faster than others?

• dynamic allocates chunks as threads become free. Can

have much higher overhead though.

◦ static – divided into size chunk, statically assigned to

threads

26

◦ dynamic – divided into chunks, dynamically assigned

threads as they finish

◦ guided – like dynamic but shrinking blocksize

why do this? When problem first starts lots of big

chunks left. But near end probably not even, could

end up with one thread getting large chunk and rest

none. Better load balancing.

◦ runtime – from OMP SCHEDULE environment

variable

◦ auto – compiler picks for you

27

Other Options

• nowait – threads do not wait at end of loop

• ordered – loops must execute in order they would in

serial code

• collapse – nested loops can be collapsed

if “perfectly nested” meaning nested with nothing inside

the nests. Compiler can turn this into one big loop

28

Data Dependencies

Loop-carried dependencies
for(i=0;i <100;i++) {

x=a[i];

a[i+1]=x*b[i+1]; /* depends on next iteration of loop */

a[i]=b[i];

}

29

Shift example
for(i=0;i <1000;i++)

a[i]=a[i+1];

Can we parallelize this?

Equivalent, can we parallelize this?
t[i]=a[i+1]

a[i]=t[i]

More overhead, but can be done in parallel

30

Reductions

• reduction – vector dot product. The work is split up

into equal chunks, then the operator provided is used to

? and then they are all combined for final result.

so reduction(+:a) will add up all threads as to final value

31

Reduction Example
for (int i=0;i <10;++i) {

a = a op expr

}

• expr is a scalar expression that does not read a

• limited set of operations, +,-,*

• variables in list have to be shared
#pragma omp parallel for reduction (+:sum) schedule(static ,8) num_threads(num_th$

for(i = 0; i < N; i++) {

/* Why does this need to be a reduction?*/

sum = sum + i*a[i];

}

printf("sum=%lld\n",sum);

32

OMP Sections

You could implement this with for() and a case

statement (gcc does it that way?)
#pragma omp parallel sections

#pragma omp section

// WORK 1

#pragma omp section

// WORK 2

Will run the two sections in parallel at same time.

33

Synchronization

• OMP MASTER – only master executes instructions in

this block

• OMP CRITICAL – only one thread is allowed to execute

in this block

• OMP ATOMIC – like critical but for only one instruction,

a memory access faster

• OMP BARRIER – force all threads to wait until all are

done before continuing

34

there’s an implicit barrier at the end of for, section, and

parallel blocks. It is useful if using nowait in loops

35

Synchronization

• Critical sections pragma omp critical (name)

• Barriers

• Locks

• omp init lock()

• omp destroy lock()

• omp set lock()

36

• omp unset lock()

• omp test lock()

37

Flush directive

• #pragma omp flush(a,b)

• Compiler might cache variables, etc, so this forces a and

b to be uptodate across threads

38

Other Notes

can call functions, functions outside of directives can

still have openMP directive sin them (orphan directives)

39

Nested Parallelism

• can have nested for loops, but by default the number of

threads comes from the outer loop so an inner parallel

for is effectively ignored

• can collapse loops if prefectly nested

• perfectly nested means that all computation happens in

inner-most loop

• omp set nested(1); can enable nesting, but then you

end up with OUTER*INNER number of threads

40

• alternately, just put the #parallel for only on the inner

loop

41

OpenMP features

• 4.0

support for accelerators (offload to GPU, etc)

SIMD support (specify simd)

better error handling

CPU affinity

task grouping

user-defined reductions

sequential consistent atomics

Fortran 2003

42

• 3.1

• 3.0

tasks

lots of other stuff

43

Pros and Cons

• Pros

– portable

– simple

– can gradually add parallelism to code; serial and parallel

statements (at least for loops) are more or less the

same.

• Cons

– Race conditions?

44

– Runs best on shared-memory systems

– Requires recent compiler

45

