
ECE 574 – Cluster Computing
Lecture 11

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 February 2017



Announcements

• Homework #6 was posted. Was a problem with the link

to the code in the original handout, it has been updated.

• Midterm will be after the break. Still deciding what form

it will take.

1



HW#5 Review

• Low-level C is a pain. Things like passing pointers to

double-indexed arrays, and (void *) casting.

I’d like to say you’ll never see this, but if you ever get a

job doing Linux kernel or similar low level work there’s a

lot of this that goes on.

• Hopefully you’ll find OpenMP is a lot simpler.

• Some results on a 10848x10824 NASA image I found:

2



bench Load convolve combine store

before 945,172 20,972,969 1,740,545 865,404

coarse(2) 952,647 10,752,946 1,785,945 882,353

fine 1 960,527 10,582,954 12,303,506 921,339

fine 2 5,418,575 6,255,203

fine 8 935,998 1,491,921 3,574,811 928,533

fine 16 729,125 2,097,431

fine 32 627,906 714,431

3



OpenMP Examples

See the course website for a link to a tarball with all the

examples.

4



Simple

openmp simple.c just creates a parallel region and

prints thread number. By default, how many threasd are

set up on the Haswell-EP machine?

5



Scope

TODO: private/shared variable example

6



for

openmp for.c

• Parallelizes the memory init loop.

• Thread number set from command line and the

num threads() directive.

• What happens to performance as you add threads?

7



static schedule

openmp static schedule.c

• Creates 100 threads with chunksize of 1.

• Threads are assigned loop indices at compile time.

• In example, thread 0 is fastest and 4 the slowest.

• You can see thread 0 runs through its assignment fast

and then sits around doing nothing while the rest slowly

finish.

8



dynamic schedule

openmp dynamic schedule.c

• Creates 100 threads with chunksize of 1.

• Threads are assigned loop indices dynamically.

• Each thread starts with one, but zero runs all the rest

because it is so fast.

9



Changing Chunksize

openmp dynamic chunk.c

• Creates 100 threads with a prime chunksize.

• Threads are assigned same amount of time to run.

• Spread mostly evenly but the last set of chunks, only

two threads get assigned while the others have nothing

to do.

• Switch to “guided” and the chunksize decreases over

time and the ending is a bit more balanced.

10



critical

openmp critical.c

• Has a parallel loop, but a shared global counter inside.

• What happens without a critical section? (race

condition)

• Put in the critical section get right results.

• But slow!

• No need to manually add mutexes, OpenMP abstracts

that away.

11



section

openmp section.c

• For parallelism when you don’t have a loop

• Have multiple functions that have no dependencies, want

to run at same time?

• No matter how many threads you have, only can run up

to the maximum number of sections at a time.

12



reduction

openmp reduction.c

• What if you calculate something in each loop iteration,

but want to sum them all in the end? Something like a

vector dot product?

• You could put it in a for loop, sum = sum+ i ∗ a[i] but

race condition on shared sum.

• Could put in critical section but that’s slow as we saw.

• Instead can use special reduction directive.

13



simd reduction

openmp simd reduction.c

https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40

• simd directive

• Supported by recent GCC (5.0 and later)

• Tries to map your code into SSE/AVX vector instructions

if available on your processor.

• Our example turns out runs *slower*. Possibly our input

set is not big enough.

• Can look at assembly code to verify it is making SIMD

14



code:

objdump --disassemble-all openmp simd reduction

• Also you can use gcc -S to generate assembly.

15



offload

Can offload to GPU or MIC.

https://gcc.gnu.org/wiki/Offloading

Need separate compiler for component. Support really

isn’t there yet.

16


