
ECE 574 – Cluster Computing
Lecture 14

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 March 2017

http://web.eece.maine.edu/~vweaver


Announcements

• HW#7 late being posted

• Hand back midterm

• Don’t forget project topics due Thursday

1



Notes on MPI

• Hard to think about. Running on different machine, so

setting variables *does not* get set on all, like it does

with OpenMP or pthreads

• On homework, want to load JPG data on rank0, send to

rest

• Tricky: before you can send to rest, they have to know

how big of an area to allocate to store it in. How will

they know this?

2



• MPI does not give good error messages. OpenMPI worse

than MPICH. Will often get segfault, hang forever, or

weird stuff where it runs 4 single-threaded copies of

program rather than one 4-threaded

• Many of the commands are a bit non-intuitive

3



Graphics Processing Units

• Retrospective on old graphics hardware

• Framebuffer is simple (though annoying pointer match

like in sobel or worse). VGA Mode 13h, 0xa0000, 64kB

• Old video game systems didn’t even have that. Why?

1MB for a framebuffer was expensive. Only 64k RAM

total.

• Atari 2600 only had 128B of RAM, total. 40-bit

framebuffer. Racing the beam.

• Also could do sprites or tile based.

4



GPUs

5



Interfaces

• Originally each vendor had own 3D interface, SGI

standardized

• OpenGL – SGI

• Direct3D – Microsoft

• Vulkan – new interface with less baggage

• Originally for HPC/CAD but gaming has brought down

prices for everyone.

6



GPGPUS

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

7



Why GPUs?

• Old example:

– 3GHz Pentium 4, 6 GFLOPS, 6GB/sec peak

– GeForceFX 6800: 53GFLOPS, 34GB/sec peak

• Newer example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS

8



GPGPU Key Ideas

• Using many slimmed down cores

• Have single instruction stream operate across many cores

(SIMD)

• A void latency (slow textures, etc) by working on another

group when one stalls

9



GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

• highly parallel

10



GPU Problems

• Optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• Serial code with a lot of control flow runs poorly

• Off-chip memory transfers can be slow

11



Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one

12



Older / Traditional GPU Pipeline

• In old days, fixed pipeline (lots of triangles).

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.

13



Older / Traditional GPU Pipeline

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

14



• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly

read)

• Write out to framebuffer (mostly write)

• Z-buffer for depth/visibility

15



GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment

16



Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization

Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write

17



Example for Shader 3.0, came out DirectX9

They are up to Pixel Shader 5.0 now

18



Shader 3.0 Programming – Vertex
Processor

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

19



• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

– EXP, EXPP, LIT, LOGP (exponential)

– RCP, RSQ (reciprocal, r-square-root)

– SIN, COS (trig)

20



Shader 3.0 Programming – Fragment
Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)

21


