
ECE 574 – Cluster Computing
Lecture 3

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

29 January 2019

http://web.eece.maine.edu/~vweaver


Announcements

• HW#1 will be graded

• HW#2 will be assigned Thursday, will be due after a

week

will be posted to website (and I will e-mail)

1



My Performance Analysis Story

• I started out doing Memory Systems/Computer

Architecture

Mostly caches, but lots of other things, attempting to

break Memory Wall.

• In academia you can’t really design a new chip to test

things; everything done in software simulation

• Ended up 95% of time fighting poorly written simulators

Not much fun. How do you know if right?

Validation. How do you validate?

2



Measure on real hardware. How? Performance counters

How about those sims? 20% at best. People reporting

stuff lost in noise.

Also cheat a bit. Takes weeks to run benchmark, so

they just maybe run first million instructions. Often on

simulators for things like Dec Alpha

not repeatable. ”heavily modified sim”, ask to see it and

they won’t. Or worse, say they will when they clean it

up but never do.

3



Hardware Performance Counters

• Registers that hold architectural performance counts

• Available on all modern CPUs

• Usually 2-8 of them, often 40-64 bits wide

• Possibly up to 100s of events available

• Have registers you set to enable, start, stop, read value,

select event type

• Interface varies arch to arch, vendor to vendor, and even

chip revisions

• Other useful thing, hardware interrupt can be triggered

4



when counter overflows. Why?

If you read infrequently, could miss overflows and be off

Also useful for sampling.

• Pure user events, how can you make sure only belongs

to your process?

Operating system can save/restore registers on context

switch

5



Are counter results accurate?

• See my various papers

• Short answer is ususally, but more obscure might not be

• Intel/AMD also tend to overcount on interrupts

• How would you validate the counters themselves?

Exact assembly language program.

• Also chip companies care, but counter correctness is

not enough to stop a chip from shipping. They might

undocument (or errata) if you report a bug.

6



Linux Version

• perf event open() system call. Really complex, see the

manpage.

• Old days was perfctr, then perfmon which required

patching kernel.

• Slowly looked like was getting merged, but then out

of nowhere Molnar introduced perf event which got in

quickly in 2.6.31 kernel

• Has issues but is mostly good enough these days.

7



perf tool

• perf tool comes with kernel

• Can be used for doing measurement

8



PAPI

• Layer of abstraction.

• Want to use counters on all kinds of supercomputers

without having to change for each?

• Also provides self-monitoring, can add “calipers” to your

code to measure things.

9



Where Performance Info Comes From

• User Level (instrumentation)

• Kernel Level (kernel metrics)

• Hardware Level (performance counters)

10



Types of Performance Info

• Aggregate counts – total counts of events that happen

• Profiles – periodic snapshots of program behavior, often

providing statistical representations of where program

hotspots are

• Traces – detailed logs of program behavior over time

11



Gathering Aggregate Counts

12



Measuring runtime – using time

$ time ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

real 0m7.360s

user 0m7.330s

sys 0m0.000s

• Real – wallclock time

• User – time the program is actually running (how

calculated)

• Sys – time spent in the kernel

13



• Must USER+SYS = REAL? Not necessarily (what if

other things using the kenrel)

• Can USER be greater than REAL? yes, if multiprocessor

• Is the time command deterministic?

No. Lots of noise in a system. Can write whole papers

on why.

• Which do you use in speedup calculations?

14



perf tool
$ perf stat ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

Performance counter stats for ’./dgemm_naive 200’:

7239.152263 task-clock (msec) # 0.992 CPUs utilized

116 context-switches # 0.016 K/sec

0 cpu-migrations # 0.000 K/sec

357 page-faults # 0.049 K/sec

6,513,184,942 cycles # 0.900 GHz

<not supported> stalled-cycles-frontend

<not supported> stalled-cycles-backend

2,592,685,475 instructions # 0.40 insns per cycle

91,797,411 branches # 12.681 M/sec

974,817 branch-misses # 1.06% of all branches

7.299463710 seconds time elapsed

15



• Many options. Can select events with -e

• Use perf list to list all available events

• Hundreds of events available on x86, not quite so many

on ARM.

• Understanding the results often requires a certain

knowledge of computer architecture.

16



Profiling

• Records summary information during execution

• Usually Low Overhead

• Implemented via Sampling (execution periodically

interrupted and measures what is happening) or

Measurement (extra code inserted to take readings)

17



Profiling Tools

• Low Overhead – Using hardware counters, such as perf

• Small Overhead – Using static instrumentation, such as

gprof

• Large Overhead – Using dynamic binary instrumentation,

such as valgrind callgrind

18



Compiler Profiling

• gprof

• gcc -pg

• Adds code to each function to track time spent in each

function.

• Run program, gmon.out created. Run “gprof

executable” on it.

• Adds overhead, not necessarily fine-tuned, only does

time based measurements.

• Pro: available wherever gcc is.

19



DBI Profiling

• Valgrind / callgrind tool

20



Perf Profiling

Automatically interrupts program and takes sample every

X instructions.

• perf record

• perf annotate

21



Skid

• Beware of “skid” in sampled results

• This is what happens when a complex processor cannot

stop immediately, so the reported instruction might be

off by a few instructions.

• Some processors do not have this problem. Recent Intel

processors have special events that can compensate for

this.

22



Tracing

• When and where events of interest took place

• Shows when/where messages sent/received

• Records information on significant events

• Provides timestamps for events

• Trace files are typically *huge*

• When doing multi-processor or multi-machine tracing,

hard to line up timestamps

23



Performance Data Analysis

Manual Analysis
• Visualization, Interactive Exploration, Statistical

Analysis

• Examples: TAU, Vampir

Automatic Analysis
• Try to cope with huge amounts of data by automatic

analysis

• Examples: Paradyn, KOJAK, Scalasca, Perf-expert

24


