
ECE 574 – Cluster Computing
Lecture 4

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 January 2019

http://web.eece.maine.edu/~vweaver


Announcements

• I’ll post Homework #2, will send e-mail, submit via

e-mail

• Barrows Hall power shutdown this weekend (likely

Sunday 9am-noon) so don’t plan on doing your

homework then. Hopefully the machine will come back

up.

1



Cluster Accounts

• Log in to weaver-lab. Be sure to use port 2131 or it will

try to connect to the wrong machine. (Why?)

• Behave. No hacking/cracking/spamming/irc-bots

Also be responsible with disk usage, as I don’t have disk

quota set up.

• Change your password first thing.

• If you find a security bug, great! Let me know! Don’t

2



go deleting things or impersonating people or installing

root kits, or other stuff.

3



Things from last time

• Performance counters in the cloud. Why we are doing

assignments on my computer rather than on the UMaine

supercomputer.

• Performance counters and interpreted code. Can you

use it to help find bugs in java or python etc? Trickier.

4



Speedup / Parallel Efficiency Example

• Reminder

◦ Speedup = Sp =
Ts
Tp

where p=# of processes (threads)

Ts = execution time of sequential code

Tp = execution time of parallel with p processes

For ideal, Sp = p

◦ Parallel Efficiency

Ep =
Sp
p = Ts

pTp
Ideal linear speedup Ep=1

5



• Examples where serial code takes 120s, p=2

◦ T2 = 150s, Sp =
120
150 = 0.8, Ep =

.8
2 = .4

◦ T2 = 120s, Sp =
120
120 = 1, Ep =

1
2 = .5

◦ T2 = 60s, Sp =
120
60 = 2, Ep =

2
2 = 1

◦ T2 = 30s, Sp =
120
30 = 4, Ep =

4
2 = 2

6



Running Linpack

• HPL solves linear system of equations, Ax=b. LU

factorization.

• Download and install a BLAS. ATLAS? OpenBLAS?

Intel?

Compiler? intel? gcc? gfortran?

• Download and install MPI (we’ll talk about that later).

MPICH? OpenMPI?

• Download HPL. Current version 2.2?

Modify a Makefile (not trivial) make sure links to proper

7



BLAS. make arch=OpenBLAS

• Above step, might need to create a link from hpl in your

home directory to actual location for reasons

• Create a a bin/OpenBLAS with default HPL.dat file

• Run it ./xhpl Or if on cluster ./mpirun -np 4

./xhpl or similar.

• Result won’t be very good. Need to tune HPL.dat

• N is problem size. In general want this to fill RAM. Take

RAM size, squareroot, round down. NxN matrix. Each

N is 8 bytes for double precision.

• NB block size, can be tuned

8



• PxQ, if on cluster can specify machine grid to work on.

Linpack works best with as square as possible.

• Fiddle with all the results until you get the highest.

9



Commodity Cluster Layout

...

Compute Nodes

Compile Node
Login/

N
e
tw

o
rk

Storage

• Simple cluster like the pi-cluster, or older ones I’ve made

• Commodity cluster design is a combo of

ECE331/ECE435 more than anything else

10



• Why have a head node?

• What kind of network? Ethernet? Inifiniband?

Something fancier?

• Operating system? Do all nodes need a copy of the OS?

Linux? Windows? None?

• Booting: network boot, local disk boot.

• Network topology? Star? Direct-connect? Cube?

Hyper-cube?

• Disk: often shared network filesystem. Why? Simple:

NFS (network file system). More advanced cluster

filesystems available.

11



• Don’t forget power/cooling

• Running software?

12



Job Schedulers

• On a big cluster, how do you submit jobs?

• If everyone just logged in to nodes at random, would be

a mess

• Batch job scheduling

• Different queues (high priority, long running, etc)

• Resource management (make sure don’t over commit,

use too much RAM, etc)

• Notify you when finished?

• Accounting (how much time used per user, who is going

13



to pay?)

14



Scheduling

• Different Queues Possible – Low priority? Normal? High

priority (paper deadline)? Friends/Family?

• FIFO – first in, first out

• Backfill – bypass the FIFO to try to efficiently use any

remaining space

• Resources – how long can run before being killed, how

many CPUs, how much RAM, how much power? etc.

15



• Heterogeneous Resources – not all nodes have to be

same. Some more cores, some older processors, some

GPUs, etc.

16



Common Job Schedulers

• PBS (Portable Batch System) – OpenPBS/PBSPro/TORQUE

• nbs

• slurm

• moab

• condor

• many others

17



Slurm

• http://slurm.schedmd.com/

• Slurm Workload Manager

Simple Linux Utility for Resource Management

Futurama Joke?

• Developed originally at LLNL

• Over 60% of top 500 use it

18

http://slurm.schedmd.com/


sinfo

provides info on the cluster

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

debug up infinite 1 idle haswell-ep

general* up infinite 1 idle haswell-ep

19



srun

start a job, but interactively

20



sbatch

submit job to job queue

#!/bin/bash

#SBATCH -p general # partition (queue)

#SBATCH -N 1 # number of nodes

#SBATCH -n 8 # number of cores

#SBATCH -t 0-2:00 # time (D-HH:MM)

#SBATCH -o slurm.%N.%j.out # STDOUT

#SBATCH -e slurm.%N.%j.err # STDERR

export OMP_NUM_THREADS=4

./xhpl

Notes: sbatch -N 24 - -ntasks-per-node=4 ./time coarse.sh

To run on all 96 cores of pi-cluster

21



Can set up to e-mail you when done (though only

locally).

22



squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

63 general time_hpl ece574-0 PD 0:00 1 (Resources)

64 general time_hpl ece574-0 PD 0:00 1 (Resources)

65 general time_hpl ece574-0 PD 0:00 1 (Resources)

62 general time_hpl ece574-0 R 0:14 1 haswell-ep

23



scancel

kills job

scancel 65

24



Average Machine Speeds

• Look up my top40 list. Green and regular. Compare

with top and bottom of top500. Also Pi-cluster

• Computers we might use in class:

haswell-ep server 436 GFLOPS, 16/32 cores, 80GB,

2.13GFLOP/W

power8 machine 195 gflops, 8/64 cores, 32GB, ??

pi-cluster, 15.4 GFLOPS, 96 cores, 24GB RAM, 0.166

GFLOP/W

pi-3B 3.62 GFLOPS, 4 cores, 1GB RAM, 0.813

25



GFLOP/W (higher possible)

Reminder, top machine, 93 PFLOPS, sunway,

6GFLOPS/W (top 10 3-9 GFLOPS/W)

• First list, June 1993. Top machine 1024 cores, 60

GFLOPS, 131kW

Pi cluster would have been #7

• I ran HPCG benchmark on Haswell-EP machine.

Theoretical: 16DP FLOP/cycle * 16 cores * 2.6GHz

= 666 GFLOPS

26



Linpack/OpenBLAS: 436 GFLOPS (65% of peak),

HPCG: 0.7 GFLOPS (0.1% of peak)

27


