
ECE 574 – Cluster Computing
Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

7 February 2019

http://web.eece.maine.edu/~vweaver

Announcements

• HW#3 will be posted

• I found my code with SSE intrinsics, here is a brief

excerpt of what it looks like to allocate a 256-bit variable

and load a vector to it.

__m256i in1;

/* vmovdqa (%rcx),%ymm1 */

__m256i filter_avx = _mm256_load_si256((__m256i *) filter);

1

Workload for future Homeworks

• Matrix multiply is typical, but boring

• What else can we use that’s embarrassingly parallel, but

interesting?

2

Convolution

• https://en.wikipedia.org/wiki/Kernel_%28image_processing%29

• Specifically 2-D convolution

• Widely used in image processing

• Walk over every pixel in an image, convolving a matrix

over it. The new value is based on some combination of

the surrounding pixels.

• Usually a 3x3 grid, but can be larger

3

https://en.wikipedia.org/wiki/Kernel_%28image_processing%29

Common Convolution Matrices

• Identity =
0 0 0
0 1 0
0 0 0



• Blur =
1 1 1
1 1 1
1 1 1

 (need to normalize)

• Sharpen =
 0 −1 0
−1 5 −1
0 −1 0



• Emboss =
−2 −1 0
−1 1 1
0 1 2



• Sobel (edge detection) =
 1 2 1

0 0 0
−1 −2 −1

1 0 −1
2 0 −2
1 0 −1



4

What does a framebuffer look like

• Depends on many things

• Bits-per-pixel, 1bpp, 2bpp, 4bpp, 8bpp, 15bpp, 16bpp,

24bpp, 32bpp

• We will be using 24bpp, with RGB each being one byte

• 2D image is a 2D array, but that’s hard to do in C, so

we will just do a 1D array

5

One way to implement the convolution

There are many ways you can implement this, some will

be faster than others. The one shown below is definitely

not the fastest.

Below is *pseudo code*. It won’t compile, as you won’t be

able to do the triple array access as pictured, you’ll have

to access the values as a 1-D array as discussed in class.

6

for(x=1;x<width -1;x++) {

for(y=1;y<height -1;y++) {

for(color =0;color <3; color ++) {

sum =0;

sum+= filter [0][0]* old[x-1][y-1][color];

sum+= filter [1][0]* old[x][y-1][color];

sum+= filter [2][0]* old[x+1][y-1][color];

sum+= filter [0][1]* old[x-1][y][color];

sum+= filter [1][1]* old[x][y][color];

sum+= filter [2][1]* old[x+1][y][color];

sum+= filter [0][2]* old[x-1][y+1][color];

sum+= filter [1][2]* old[x][y+1][color];

sum+= filter [2][2]* old[x+1][y+1][color];

/* Normalize if necessary */

/* (not necessary for Sobel) */

/* Saturate if necessary */

/* Make sure stays in 0 to 255 range */

(your code here)

7

/* Set the new value */

new[x][y][color]=sum;

}

}

}

Hints:

• a[x][y][color] should be done as

a[(y*xsize*3)+(x*3)+color]

You might want to write a helper function that does this

for you.

• Remember in C that array indexes begin at 0, not 1.

8

Sobel Convolution

• For Sobel we do not need to normalize the result, but

we do need to saturate

Meaning if the results is greater than 255, set to 255, or

if less than zero, set to zero. Otherwise will wrap and

give odd results.

• In the homework we will find the horizontal edge, the

vertical edge, and then combine the two for the final

result by for each element squaring the two results then

taking the square root.

9

PAPI Usage Instructions

• Initialize with:

PAPI library init(PAPI VER CURRENT);

Check the result to see if it matches PAPI VER CURRENT

• All other functions should return PAPI OK if successful.

• If using pthreads need to do:

PAPI thread init(pthread self);

• Eventsets are just integers

int eventset=PAPI NULL;

10

• Gathered results are typically 64-bit integers

long long values[NUM];

Where NUM is the number of events you are measuring

at once.

• Create an eventset:

PAPI create eventset(&eventset);

• Available events can be seen with the papi avail and

papi native avail commands.

• Add an event. You can run multiple times to add

multiple events.

11

PAPI add named event(eventset,"PAPI TOT INS");

• Before the code of interest do a

PAPI start(eventset);

• Afterward do a

PAPI stop(eventset,values);

and you can print the value or save it for later.

• When printing, remember the results are 64 bits.

printf("Result: %lld",values[0]);

12

How to Optimize

• ROW vs Column Major? FORTRAN vs C? Comes down

to using cache in an expected way.

• Loop order? Again, want to access in a way that keeps

things in cache

• Loop unrolling? Avoids branch issues, etc.

• SIMD? Definitely a case where we could load all 4

channels and operate on them at once. Possibly multiple.

A bit advanced for this class though.

13

Types of Clusters

• Shared-memory: many CPUs, but one shared memory

address space. Usually one copy of operating system.

When write to memory, all CPUs can see it.

• Distributed: man systems spread across network. Each

has own memory. For other CPUs to see data have to

send message across network.

14

Multicore Systems

• Single Package: CMP (Chip-multiprocessor) or SMP

(Symmetric-multiprocessor)

• Multi-package: Multiple CMP packages in system.

15

CMP Diagram

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

16

Hardware Multi-Threading

• Idea is to re-use a pipeline to execute multiple threads

at once, *without* fully replicating the entire CPU (so

less than multicore)

• You will have to replicate some things (program counter

for each, etc)

• Usually they appear to the CPU as full separate

processors even though they are not.

• Various ways to do this:

17

◦ Fine-grained – rotate threads every cycle

◦ Coarse-grained – rotate threads only if long latency

event happens (cache miss)

◦ Simultaneous – issue from any combination of threads,

to maximize use of pipeline (have to be superscalar)

• Why do this? Often on superscalar running only one

thread will leave parts idle, try to make use of these.

• Bad side effects?

Can actually slow down code (especially if both threads

18

trying to use same functional units, also if both using

memory heavily as cache is often shared)

• Sometimes see it talked about as SMT (Simultaneous

Multithreading), Intel Hyperthreading is more or less the

same thing

• Modern security issues, leak info between threads

19

SMT Diagram

PC
Ins Queue

PC
Ins Queue

PC
Ins Queue

20

Cache Coherency

• How do you handle data being worked on by multiple

processors, each with own cache of main memory?

• Cache coherency protocols.

• Many and varied. MESI is a common one

• Directory vs Snoopy

21

MESI

• Modified, Exclusive, Shared, Invalid

22

Barriers and Ordering

• On modern out-of-order execution, memory accesses can

happen out-of-order

• Sequential consistency – all happen in order

• Strong consistency – stores

• Weak consistency – can be arbitrarily reordered, only

barriers protect you

• A memory barrier instruction makes sure all previous

23

loads/stores finish before moving on

• Most important for things like locks, as well as memory-

mapped I/O

24

Ordering Example

y1=0

y2=0

y1=3

y2=4

Another core

x1=y1

x2=y2

What values of x1 and x2 can you get?

Strong:

x1=0,x2=0

x1=3,x2=0

x1=3,x2=4

25

Weak:

x1=0,x2=4

26

Haswell EP Setup

CPU0

CPU1

CPU2

CPU3 CPU4

CPU5

CPU6

CPU7LLC0

LLC1

LLC2

LLC3 LLC4

LLC5

LLC6

LLC7

DIMM3

DIMM2

DIMM1

DIMM0

Home Agent
Mem Controller

QPI
PCIe

27

NUMA

Non-uniform memory access – some accesses will have to

cross to other processors, causing extra delay. How can

you optimize this?

28

Traditional NUMA Layout

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

29

