
ECE 574 – Cluster Computing
Lecture 7

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 February 2019

Announcements

• Homework #3 was posted. Don’t put it off until the

last minute!

1

Homework #2 Review

• 2

1.

Procs 1 2 3 4 8 16 32 64

Time 1:58 1:03 0:42 0:34 0:21 0:14 0:16 0:16
Time 118 63 42 34 21 14 16 16

GFLOPS 45 84 125 157 260 368 336 325
Speedup — 1.87 2.81 3.47 5.62 8.42 7.37 7.37

Peff — 0.94 0.94 0.87 0.70 0.53 0.23 0.11

2. 2b) Speedup: (t1/tp)

3. 2c) Parallel effic: (Sp/p or T1/pTp)

4. 2d) Yes, time decreases as you add cores.

Not ideal strong scaling though.

2

5. 2e) No weak, didn’t test with sizes constant

6. Time is less as only dgemm, not malloc or randomizing

7. More beause user adds all cores

• 3

◦ 3a) dgemm kerenel (double-precision generic matrix-

matrix multiply. algorithm kernel (core) not Linux

kernel)

If you got bit time in kernel, you ran perf on time

◦ 3b) vmovups (truncated) (memcpy?)

◦ 3c) skid

3

Homework #2 More

If ideal strong scaling, then parallel efficiency would be

closer to 1. Not enough results for weak scaling.

To get 1G/core, roughly 2
3 ∗ n

3 = 500B ∗ p
Cores N=20k Size=3.2G Size=1G/core time Speedup GFLOPs

1 119s 3.2G 11,000 9000 11.5 —- 42.5

2 64s 1.6G 16,000 11500 14 0.82 72

4 37s 0.8G 22,360 14400 14 0.82 139

8 22s 0.4G 31,600 18200 18 0.63 222

16 18s 0.2G 44,700 22900 26 0.44 304

32 18s 0.1G 63,240 28800 47 0.24 336

64 18s 0.05G 89,000 36000 93 0.12 334

4

What is the worst case parallel efficiency (i.e. a single-

threaded program so adding more cores does not help?).

Is this truly the worst-case?

Perf record, make sure running it on benchmark, i.e. perf

record ./xhpl

If you run on time, or the shell script you will still get

the right results because perf by default follows all child

processes. However if you run on sbatch, it won’t work, as

sbatch quickly sets things up and notifies the scheduling

daemon via a socket connection to start things, then exits.

In that case perf will only measure sbatch and not your

5

actual benchmark run.

perf report will show a profiling breakdown at the
function level:

Samples: 688K of event ’cycles’, Event count (approx.): 565000306359

Overhead Command Shared Object Symbol

81.14% xhpl xhpl [.] dgemm_kernel

3.39% xhpl xhpl [.] HPL_lmul

3.09% xhpl xhpl [.] HPL_rand

1.57% xhpl xhpl [.] HPL_dlaswp00N

1.53% xhpl xhpl [.] HPL_ladd

1.48% xhpl libc-2.28.so [.] __sched_yield

1.16% xhpl xhpl [.] HPL_setran

0.66% xhpl xhpl [.] HPL_pdlange

0.60% xhpl [unknown] [k] 0xfffffe0000006000

Pressing enter or using perf annotate will show at the

6

asm level:

0.03 | c0: vmovups (%rdi),%ymm1

0.62 | vmovups 0x20(%rdi),%ymm2

0.07 | vmovups (%r15),%ymm3

0.93 | vmovups %ymm1,(%rsi)

0.03 | vmovups %ymm2,0x20(%rsi)

0.02 | vmovups %ymm3,0x40(%rsi)

0.07 | add $0x40,%rdi

0.00 | add $0x40,%r15

0.02 | add $0x60,%rsi

0.01 | dec %rax

| jne c0

move unaligned packed 256-bits from memory to register (single precision?)

memory copy? By default uses :ppp to reduce skid

7

Parallel Programming!

8

Processes – a Review

• Multiprogramming – multiple processes run at once

• Process has one view of memory, one program counter,

one set of registers, one stack

• Context switch – each process has own program counter

saved and restored as well as other state (registers)

• OSes often have many things running, often in

background.

9

On Linux/UNIX sometimes called daemons

Can use top or ps to view them.

• Creating new: on Unix its fork/exec, windows

CreateProcess

• Children live in different address space, even though it

is a copy of parent

• Process termination: what happens?

Resources cleaned up. atexit routines run.

How does it happen?

10

exit() syscall (or return from main).

Killed by a signal.

Error

• Unix process hierarchy.

Parents can wait for children to finish, find out what

happened

not strictly possible to give your children away, although

init inherits orphans

• Process control block.

11

Threads

• Each process has one address space and single thread of

control.

• It might be useful to have multiple threads share one

address space

GUI: interface thread and worker thread?

Game: music thread, AI thread, display thread?

Webserver: can handle incoming connections then pass

serving to worker threads

Why not just have one process that periodically switches?

12

• Lightweight Process, multithreading

• Implementation:

Each has its own PC

Each has its own stack

• Why do it?

shared variables, faster communication

multiprocessors?

mostly if does I/O that blocks, rest of threads can keep

going

allows overlapping compute and I/O

13

• Problems:

What if both wait on same resource (both do a scanf

from the keyboard?)

On fork, do all threads get copied?

What if thread closes file while another reading it?

14

Thread Implementations

• Cause of many flamewars over the years

15

User-Level Threads (N:1 one process many
threads)

• Benefits

– Kernel knows nothing about them. Can be

implemented even if kernel has no support.

– Each process has a thread table

– When it sees it will block, it switches threads/PC in

user space

– Different from processes? When thread yield() called

it can switch without calling into the kernel (no slow

16

kernel context switch)

– Can have own custom scheduling algorithm

– Scale better, do not cause kernel structures to grow

• Downsides

– How to handle blocking? Can wrap things, but not

easy. Also can’t wrap a pagefault.

– Co-operative, threads won’t stop unless voluntarily give

up.

Can request periodic signal, but too high a rate is

inefficient.

17

Kernel-Level Threads (1:1 process to
thread)

• Benefits

– Kernel tracks all threads in system

– Handle blocking better

• Downsides

– Thread control functions are syscalls

– When yielding, might yield to another process rather

than a thread

18

– Might be slower

19

Hybrid (M:N)

• Can have kernel threads with user on top of it.

• Fast context switching, but can have odd problems like

priority inversion.

20

Linux

• Posix Threads

• Originally used only userspace implementations. GNU

portable threads.

• LinuxThreads – use clone syscall, SIGUSR1 SIGUSR2 for

communicating.

Could not implement full POSIX threads, especially with

signals. Replaced by NPTL

Hard thread-local storage

21

Needed extra helper thread to handle signals

Problems, what happens if helper thread killed? Signals

broken? 8192 thread limit? proc/top clutter up with

processed, not clear they are subthreads

• NPTL – New POSIX Thread Library

Kernel threads

Clone. Add new futex system calls. Drepper and Molnar

at RedHat

Why kernel? Linux has very fast context switch

compared to some OSes.

Need new C library/ABI to handle location of thread-

22

local storage

On x86 the fs/gs segment used. Others need spare

register.

Signal handling in kernel

Clone handles setting TID (thread ID)

exit group() syscall added that ends all threads in

process, exit() just ends thread.

exec() kills all threads before execing

Only main thread gets entry in proc

23

Pthread Programming

• based on this really good tutorial here:

https://computing.llnl.gov/tutorials/pthreads/

24

Pthread Programming

• Changes to shared system resources affect all threads in

a process (such as closing a file)

• Identical pointers point to same data

• Reading and writing to same memory is possible

simultaneously (with unknown origin) so locking must

be used

25

When can you use?

• Work on data that can be split among multiple tasks

• Work that blocks on I/O

• Work that has to handle asynchronous events

26

Models

• Pipeline – task broken into a set of subtasks that each

execute serial on own thread

• Manager/worker – a manager thread assigns work to a

set of worker threads. Also manager usually handles I/O

static worker pool – constant number of threads dynamic

worker pool – threads started and stopped as needed

• Peer – like manager/worker but the manager also does

calculations

27

Shared Memory Model

• All threads have access to shared memory

• Threads also have private data

• Programmers must properly protect shared data

28

Thread Safeness

Is a function called thread safe?

Can the code be executed multiple times simultaneously?

The main problem is if there is global state that must

be remembered between calls. For example, the strtok()

function.

As long as only local variables (on stack) usually not an

issue.

Can be addressed with locking.

29

POSIX Threads

• 1995 standard

• Various interfaces:

1. Thread management: Routines for manipulating

threads – creating, detaching, joining, etc. Also for

setting thread attributes.

2. Mutexes: (mutual exclusion) – Routines for creating

mutex locks.

3. Condition variables – allow having threads wait on a

lock

30

4. Synchronization: lock and barrier management

31

POSIX Threads (pthreads)

• A C interface. There are wrappers for Fortran.

• Over 100 functions, all starting with pthread

• Involve “opaque” data structures that are passed around.

• Include pthread.h header

• Include -pthread in linker command to compiler

32

Creating Threads

• Your function, as per normal, only includes one thread

• pthread create() creates a new thread

• You can call it anywhere, as many times as you want

• pthread create (thread,attr,start routine,arg)

• You pass is a pointer to a thread object (which is

opaque), an attr object (which can be NULL), a

33

start routine which is a C function called when it starts,

an an arg argument to pass to the routine.

• Only can pass one argument. How can you pass more?

pointer to a structure.

• With attributes you can set things like scheduling policies

• No routines for binding threads to specific cores, but

some implementations include optional non-portable way.

Also Linux has sched setaffinity routine.

34

Terminating Threads

• pthread exit()

• Returns normally from its starting routine

• another thread uses pthread cancel() in it

• The entire process is terminated (by ending, or calling

exit(), etc)

35

Thread Management

• pthread join() lets a thread block until another one

finishes

So master can join all the children and wait until they

are done before continuing.

• Argument to a join is a specific thread to wait on

(so if waiting on four, have to have four calls to

pthread join()

36

Stack Management

• Manage your own stack? Can get and set size. Be

careful allocating too much on stack.

37

Mutexes

• Type of lock, only one thread can own it at a time. Can

be used to avoid race conditions.

38

Condition Variables

• A way to avoid spinning on a mutex

39

Debugging

40

Race Conditions

• Shared counter address

RMW on ARM

Thread A reads value into reg

Context switch happens

Thread B reads value into reg, increments, writes out

Context switch back to A

increments value, writes out

What happened?

What should value be?

41

Critical Sections

• Want mutual exclusion, only one can access structure at

once

1. no two processes can be inside critical section at once

2. no assumption can be made about speed of CPU

3. no process not in critical section may block other

processes

4. no process should wait forever

42

How to avoid

• Disable interrupts. Heavy handed, only works on single-

core machines.

• Locks/mutex/semaphore

43

Mutex

• mutex lock: if unlocked (0), then it sets lock and returns

if locked, returns 1, does not enter.

what do we do if locked? Busy wait? (spinlock) re-

schedule (yield)?

• mutex unlock: sets variable to zero

44

Semaphore

• Up/Down

• Wait in queue

• Blocking

• As lock frees, the job waiting is woken up

45

Locking Primitives

• fetch and add (bus lock for multiple cores), xadd (x86)

• test and set (atomically test value and set to 1)

• test and test and set

• compare-and-swap – Atomic swap instruction SWP

(ARM before v6, deprecated)

x86 CMPXCHG

Does both load and store in one instruction!

46

Why bad? Longer interrupt latency (can’t interrupt

atomic op)

Especially bad in multi-core

• load-link/store conditional

Load a value from memory

Later store instruction to same memory address. Only

succeeds if no other stores to that memory location in

interim.

ldrex/strex (ARMv6 and later)

• Transactional Memory

47

Locking Primitives

• can be shown to be equivalent

• how swap works:

lock is 0 (free). r1=1; swap r1,lock

now r1=0 (was free), lock=1 (in use)

lock is 1 (not-free). r1=1, swap r1,lock

now r1=1 (not-free), lock still==1 (in use)

48

Memory Barriers

• Not a lock, but might be needed when doing locking

• Modern out-of-order processors can execute loads or

stores out-of-order

• What happens a load or store bypasses a lock instruction?

• Processor Memory Ordering Models, not fun

• Technically on BCM2835 we need a memory barrier any

time we switch between I/O blocks (i.e. from serial

49

to GPIO, etc.) according to documentation, otherwise

loads could return out of order

50

Deadlock

• Two processes both waiting for the other to finish, get

stuck

• One possibility is a bad combination of locks, program

gets stuck

• P1 takes Lock A. P2 takes Lock B. P1 then tries to take

lock B and P2 tries to take Lock A.

51

Livelock

• Processes change state, but still no forward progress.

• Two people trying to avoid each other in a hall.

• Can be harder to detect

52

Starvation

• Not really a deadlock, but if there’s a minor amount

of unfairness in the locking mechanism one process

might get “starved” (i.e. never get a chance to run)

even though the other processes are properly taking and

freeing the locks.

53

How to avoid Deadlock

• Don’t write buggy code

• Pre-emption (let one of the stuck processes run anyway)

• Rollback (checkpoint occasionally)

• What to do if it happens?

◦ Reboot the system

◦ Kill off stuck processes

54

