
ECE 574 – Cluster Computing
Lecture 13

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 March 2019

http://web.eece.maine.edu/~vweaver

Announcements

• HW#5, still grading

• HW#6 – due date extended until Tuesday the 12th

1

Midterm on 7 March 2019

• Closed book, closed notes.

• Performance

◦ Speedup, Parallel efficiency

◦ Strong and Weak scaling

• Definition of Distributed vs Shared Memory

• Know why changing order of loops can make things

faster

• Pthread Programming

◦ Know about race condition, deadlock

2

◦ Know roughly the layout of a pthreads program.

(define pthread t thread structures, pthread create,

pthread join)

◦ Know why you’d use a mutex.

• OpenMP Programming

◦ parallel directive

◦ scope

◦ section

◦ for directive

• Know about MPI

3

HW#5 Review

• Have to put “parallel” either in separate directive, or in

sections.

• Also time measurement outside parallel area (time in

each section is the same with or without threads, the

difference is they can happen simultaneously). i.e. be

sure to measure wall clock, not user, time

• Don’t nest parallel! remove sections stuff for fine.

• Also, does it makes sense to parallelize the most inner

loop of 3?

4

• Also what if you mark variables private that shouldn’t

be? scope!

• Also if have sum marked private in inner loop, need

to make sure it somehow gets added on the outer

(reduction).

• Be careful with bracket placement. Don’t need one for

a for, for example.

• Also, remember as soon as you do parallel everything in

the brackets runs on X threads. So if you parallel, have

loops, then a for... those outer loops are each running

X times so you’re calculating everything X times over.

5

This isn’t a race condition because we don’t modify the

inputs so it doesn’t matter how many times we calc each

output.

• Does dynamic vs static vs chunksize affect our code? 9

muls and adds should take consistent size. When might

it not? Cache!

6

HW#6

• Having trouble getting slurm working with MPI :(

• Suggested coarse implementation

◦ Get rank and size

◦ Load the jpeg. Only in Rank0. Could you load it in

all? Why or why not?

◦ Need to tell other processes the size of our images.

image.x, image.y, image.depth. Why? So can allocate

proper sized structures on each.

◦ How can do this? Just send 3 integers. Could set up

7

custom struct but not worth it. How send this array of

3 vars? Set up array. Bcast it? Send/receive to each,

one at a time? Which is most efficient?

◦ Allocate space for the output images
new_image.pixels=malloc(image.x*image.y*image.depth*sizeof(char));

sobel_x.pixels

sobel_y.pixels

◦ Use MPI Bcast to broadcast image data from rank0

to other ranks. Note that Bcast acts as a send from

the root source (usually root 0) but as a receive on

all other ranks (there’s no need to separately have the

other ranks receive)
result = MPI_Bcast(image.pixels , /* buffer */

8

image.x*image.y*image.depth , /* count */

MPI_CHAR , /* type */

0, /* root source */

MPI_COMM_WORLD);

◦ Split up the work, you know your rank and total, so if

4 and you are #2, then you should calculate for X/4,

so 0..(X/4-1), (x/4)..(x/4*2-1), etc. How to handle

non-even multiple? Last rank should calc extra

◦ Once it is done, send back. How? MPI Gather();
MPI_Gather(new_image.pixels , /* source buffer */

sobel_x.depth*sobel_x.x*(sobel_x.y/numtasks), /* count */

MPI_CHAR , /* type */

sobel_x.pixels , /* receive buffer */

sobel_x.depth*sobel_x.x*(sobel_x.y/numtasks), /* count */

MPI_CHAR , /* type */

0, /* root source */

MPI_COMM_WORLD);

9

Note, it gathers from the beginning of the buffer, but

put it in the right place on the root. Also, how to

handle the leftover bit?

◦ Suggest you just do combine in rank#0, will in next

HW do more fine grained

◦ Write out result. Remember to only write out on

rank#0 (what happens if do so on all?)

10

Additional notes on MPI

• Hard to think about. Running on different machine, so

setting variables *does not* get set on all, like it does

with OpenMP or pthreads

• Tricky: before you can send to rest, they have to know

how big of an area to allocate to store it in. How will

they know this?

• MPI does not give good error messages. OpenMPI worse

than MPICH. Will often get segfault, hang forever, or

11

weird stuff where it runs 4 single-threaded copies of

program rather than one 4-threaded

• Many of the commands are a bit non-intuitive

12

