Cluster Computing Power

Can spend a whole class (i.e. ECE571) discussing where power goes in a modern computing system.
Cluster Computing Power

Why is low-power super-computing important?
Green500

- Green 500 list
- Push for more accurate power reporting in the Top500 list
- Top 5, Nov 2016

1. NVIDIA DGX-1 Xeon/Tesla 350kW, 9.462 GFLOPs/W
2. (#8) Swiss Piz Daint Cray XC50 Xeon/Tesla 1.3MW, 7.453 GFLOPs/W
3. Riken ZettaScaler Xeon/PEZY-SCnp
 2 ARM Cores/1024 RISC Cores, 1.5TFLOPs
 150kW, 6.7GFLOPs/W
4. (#1) Sunway TaihuLight, Sunway, 15MW, 6.0GFLOPs/W
5. Fujitsu PRIMERGY, Xeon Phi, 77kW, 5.8GFLOPs/W
Pi-cluster Power

If we had more time I would have had you read *A Raspberry Pi Cluster Instrumented for Fine-Grained Power Measurement* by Cloutier, Paradis, and Weaver.

- Push for low power computers! Maybe even ARM!
- Low power, but floating-point so-so. Even worse is I/O (networking)
- Finally getting close
<table>
<thead>
<tr>
<th>Machine</th>
<th>N</th>
<th>GFLOPS</th>
<th>Idle</th>
<th>Active</th>
<th>GFLOPS/W</th>
<th>GFLOPS/$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pi 2B</td>
<td>10,000</td>
<td>1.47</td>
<td>1.8</td>
<td>3.4</td>
<td>0.432</td>
<td>42.0</td>
</tr>
<tr>
<td>Pi 3B</td>
<td>10,000</td>
<td>3.7/6.4</td>
<td>1.8</td>
<td>4.4</td>
<td>0.844</td>
<td>106</td>
</tr>
<tr>
<td>Jetson TX-1</td>
<td>20,000</td>
<td>16.0</td>
<td>2.1</td>
<td>13.4</td>
<td>1.20</td>
<td>26.7</td>
</tr>
<tr>
<td>16x Haswell-EP</td>
<td>80,000</td>
<td>428</td>
<td>58.7</td>
<td>201</td>
<td>2.13</td>
<td>107</td>
</tr>
<tr>
<td>24xpi-cluster</td>
<td>48,000</td>
<td>15.5</td>
<td>71.3</td>
<td>93.1</td>
<td>0.166</td>
<td>7.75</td>
</tr>
</tbody>
</table>

- Per-node power measurement
- Network I/O big problem
- Why not OrangePi? (UTK)
- What if we could use the Pi GPU? No OpenCL, but people have reverse engineered part, also QPU?
SuperComputer Power

- Cooling
- DVFS
- Power-capping

- Up to 12% spent by the interconnect
 Pi cluster, 90W, 20W or so is the ethernet switch
Fujitsu K Computer, 2012

- https://www.extremetech.com/extreme/120071-how-the-worlds-fastest-supercomputer-fujitsus-k-saves-on-power-and-money

- Fine tune voltage for each CPU (variation in production). Save 7W/CPU (one Megawatt total)

- Watercooled
Titan Supercomputer, 2012

- Was an upgrade, had to install 18,688 CPUs and GPUs manually

- 480V input to cabinets (rather than 208V) to reduce cable thickness

- 9MW, building gets 25MW
• Not big enough UPS for whole machine, flywheel UPS to keep I/O nodes up until diesel kicks in

• Cabinets are air cooled, but air is water-cooled first
Power-Capping

Power Capping: a Prelude to Power Shifting by Lefurgy Wang, and Ware

- Traditionally you have to design for the “worst-case” thermal and power behavior
- Often this will leave some resources underutilized “over-provisioned”
- Power-capping – let you design cheaper power/thermal setup, and if the CPU detects it is getting too hot/too much power automatically slows things down
Measuring Power and Energy

• Sense resistor or Hall Effect sensor gives you the current
• Sense resistor is small resistor. Measure voltage drop.
 Current $V=IR$ Ohm’s Law, so $V/R=I$
• Voltage drops are often small (why?) so you made need to amplify with instrumentation amplifier
• Then you need to measure with A/D converter
• $P = IV$ and you know the voltage
• How to get Energy from Power?
Definitions

People often say Power when they mean Energy

- Dynamic Power – only consumed while computing
- Static Power – consumed all the time.
 Sets the lower limit of optimization
Units

- **Energy** – Joules, kWh (3.6MJ), Therm (105.5MJ), 1 Ton TNT (4.2GJ), eV (1.6×10^{-19} J), BTU (1055 J), horsepower-hour (2.68 MJ), calorie (4.184 J)
- **Power** – Energy/Time – Watts (1 J/s), Horsepower (746W), Ton of Refrigeration (12,000 Btu/h)
- **Volt-Amps** (for A/C) – same units as Watts, but not the same thing
- **Charge** – mAh (batteries) – need voltage to convert to Energy
CPU Power and Energy
CMOS Dynamic Power

- $P = C \Delta V V_{dd} \alpha f$

 Charging and discharging capacitors big factor ($C \Delta V V_{dd}$) from V_{dd} to ground

 α is activity factor, transitions per clock cycle

 f is frequency

- α often approximated as $\frac{1}{2}$, $\Delta V V_{dd}$ as V_{dd}^2 leading to

 $P \approx \frac{1}{2} CV_{dd}^2 f$

- Some pass-through loss (V momentarily shorted)
CMOS Dynamic Power Reduction

How can you reduce Dynamic Power?

- Reduce C – scaling
- Reduce V_{dd} – eventually hit transistor limit
- Reduce α (design level)
- Reduce f – makes processor slower
CMOS Static Power

• Leakage Current – bigger issue as scaling smaller. Forecast at one point to be 20-50% of all chip power before mitigations were taken.

• Various kinds of leakage (Substrate, Gate, etc)

• Linear with Voltage: $P_{static} = I_{leakage}V_{dd}$
Leakage Mitigation

- SOI – Silicon on Insulator (AMD, IBM but not Intel)
- High-k dielectric – instead of SO2 use some other material for gate oxide (Hafnium)
- Transistor sizing – make only critical transistors fast; non-critical can be made slower and less leakage prone
- Body-biasing
- Sleep transistors
Total Energy

• $E_{tot} = [P_{dynamic} + P_{static}]t$

• $E_{tot} = [(C_{tot}V_{dd}^2\alpha f) + (N_{tot}I_{leakage}V_{dd})]t$
Delay

- $T_d = \frac{C_L V_{dd}}{\mu C_{ox} \left(\frac{W}{L} \right) (V_{dd} - V_t)}$

- Simplifies to $f_{MAX} \sim \frac{(V_{dd} - V_t)^2}{V_{dd}}$

- If you lower f, you can lower V_{dd}
Thermal Issues

- Temperature and Heat Dissipation are closely related to Power

- If thermal issues, need heatsinks, fans, cooling
Metrics to Optimize

• Power

• Energy

• MIPS/W, FLOPS/W (don’t handle quadratic V well)

• $Energy \times Delay$

• $Energy \times Delay^2$
Power Optimization

- Does not take into account time. Lowering power does no good if it increases runtime.
Energy Optimization

- Lowering energy can affect time too, as parts can run slower at lower voltages
Energy Optimization

Which is better?

![Graph comparing energy consumption over time.](image-url)
Energy Delay – Watt/t*t

- Horowitz, Indermaur, Gonzalez (Low Power Electronics, 1994)

- Need to account for delay, so that lowering Energy does not made delay (time) worse

- Voltage Scaling – in general scaling low makes transistors slower

- Transistor Sizing – reduces Capacitance, also makes transistors slower
• Technology Scaling – reduces V and power.

• Transition Reduction – better logic design, have fewer transitions
 Get rid of clocks? Asynchronous? Clock-gating?
ED Optimization

Which is better?

\[E = 200J \]
\[ED = 200Js \]
\[EDD = 200Jss \]

\[E = 100J \]
\[ED = 200Js \]
\[EDD = 400Jss \]
Energy Delay Squared– $E^t\times t$

- Martin, Nyström, Pénzes – Power Aware Computing, 2002

- Independent of Voltage in CMOS

- ED can be misleading

\[E_a = 2E_b, \quad t_a = \frac{t_b}{2} \]

Reduce voltage by half, \[E_a = \frac{E_a}{4}, \quad t_a = 2t_a, \quad E_a = \frac{E_b}{2}, \quad t_a = t_b \]
• Can have arbitrary large number of delay terms in Energy product, squared seems to be good enough
Roughly based on data from “Energy-Delay Tradeoffs in CMOS Multipliers” by Brown et al.
Raw Data

<table>
<thead>
<tr>
<th>Delay</th>
<th>Energy</th>
<th>ED</th>
<th>ED^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>130</td>
<td>390</td>
<td>1170</td>
</tr>
<tr>
<td>3.5</td>
<td>100</td>
<td>350</td>
<td>1225</td>
</tr>
<tr>
<td>3.8</td>
<td>85</td>
<td>323</td>
<td>1227</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>300</td>
<td>1200</td>
</tr>
<tr>
<td>4.5</td>
<td>70</td>
<td>315</td>
<td>1418</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>325</td>
<td>1625</td>
</tr>
<tr>
<td>5.5</td>
<td>58</td>
<td>319</td>
<td>1755</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>330</td>
<td>1980</td>
</tr>
<tr>
<td>6.5</td>
<td>50</td>
<td>390</td>
<td>2535</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>400</td>
<td>3200</td>
</tr>
</tbody>
</table>
Other Metrics

- $\text{Energy} - \text{Delay}^n$ – choose appropriate factor

- $\text{Energy} - \text{Delay} - \text{Area}^2$ – takes into account cost (die area) [McPAT]

- Power-Delay – units of Energy – used to measure switching

- Energy Delay Diagram – [SWEEP]
Measuring Power and Energy
Why?

- New, massive, HPC machines use impressive amounts of power
- When you have 100k+ cores, saving a few Joules per core quickly adds up
- To improve power/energy draw, you need some way of measuring it
Energy/Power Measurement is Already Possible

Three common ways of doing this:

- Hand-instrumenting a system by tapping all power inputs to CPU, memory, disk, etc., and using a data logger
- Using a pass-through power meter that you plug your server into. Often these will log over USB
- Estimating power/energy with a software model based on system behavior