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Announcements

• HW#1 was graded, you should have gotten an e-mail

• If you did not do HW#1 for any reason (for example,

added the class last-minute) let me know, it it still

possible to do the assignment. Homeworks are 50% in

this class so you don’t want to miss any if you can avoid

it.

• Weather is a reminder that even complex models backed

by large HPC systems are often (always?) wrong
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Speedup Review

• Speedup is the improvement in latency (time to run)

S = told
tnew

So if originally took 10s, new took 5s, then speedup=2.

• Good metric for serial code
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Scalability

• How a workload behaves as more processors are added

• Parallel efficiency: Ep =
Sp
p = Ts

pTp

p=number of processes (threads)

Ts is execution time of serial code

Tp is execution time with p processes

• Linear scaling, ideal: Sp = p, Ep = 100%

• Real world it’s usually less. Why?

• Super-linear scaling – possible but unusual
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Strong vs Weak Scaling

• Strong Scaling –for fixed program size, how does adding

more processors help

• Weak Scaling – how does adding processors help with

the same per-processor workload
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Strong Scaling

• Have a problem of a certain size, want it to get done

faster.

• Ideally with problem size N, with 2 cores it runs twice as

fast as with 1 core (linear speedup)

• *NOTE* can still be some amount of strong scaling even

if it’s not linear!

• Often processor bound; adding more processing helps,

as communication doesn’t dominate

• Hard to achieve for large number of nodes, as many
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algorithms communication costs get larger the more

nodes involved

• Amdahl’s Law limits things, as more cores don’t help

serial code

• Improve by throwing CPUs at the problem.
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Weak Scaling

• Have a problem, want to increase problem size without

slowing down.

• Ideally with problem size N with 1 core, a problem of

size 2*N just as fast with 2 cores.

• Often memory or communication bound.

• Gustafson’s Law (rough paraphrase)

No matter how much you parallelize your code, there

will be serial sections that just can’t be made parallel

• Improve by adding memory, or improving
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communication?
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Scaling Example

LINPACK on Rasp-pi cluster. What kind of scaling is here?
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There is some strong scaling but it quickly fades after 8

nodes.

There is much more prominent weak scaling, in order

to approach a linear speedup you have to increase the

workload as you add cores.

This is most likely due to the very slow network connections

in this particular cluster.
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Common Performance Analysis Methods

• Aggregate/Overall Measurements

◦ Wall clock time

◦ Hardware Performance Counters

• Profiling

• Tracing
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Where Performance Info Comes From

• User Level (instrumentation)

Add timing measurements to own code

• Kernel Level (kernel metrics)

Kernel tracks metrics on context switch

• Hardware Level (performance counters)

CPU hardware tracks performance independent of

software
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Types of Performance Info

• Aggregate counts – total counts of events that happen

• Profiles – periodic snapshots of program behavior, often

providing statistical representations of where program

hotspots are

• Traces – detailed logs of program behavior over time
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Gathering Aggregate Counts
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Measuring runtime – using time

$ time ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

real 0m7.360s

user 0m7.330s

sys 0m0.000s

• Real – wallclock time

• User – time the program is actually running (how

calculated)

• Sys – time spent in the kernel
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time Corner Cases

• Can REAL be much larger than USER?

Related: Must USER+SYS = REAL?

On a heavily loaded multitasking system your program

might only get a fraction on the CPU power

• Can USER be greater than REAL?

yes, if multiprocessor

• Is the time command deterministic?

No. Lots of noise in a system. Can write whole papers

on why.
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• Which do you use in speedup calculations?
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time Related Note on Measurements

• Ideally try to measure on an idle system

• Can turn off various features (ASLR, bind to cores)

• Even then, expect sometimes up to 5% variation run to

run

• Ideally take *many* measurements and do things like

calculate standard deviation

• Be wary making changes to your code and reporting

speedups of under 10% because they might be noise
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Hardware Performance Counters

• Registers that hold architectural performance counts

• Available on all modern CPUs

• Usually 2-8 of them, often 40-64 bits wide

• Possibly up to 100s of events available

• Have registers you set to enable, start, stop, read value,

select event type

• Interface varies arch to arch, vendor to vendor, and even

chip revisions

• Other useful thing, hardware interrupt can be triggered
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when counter overflows. Why?

If you read infrequently, could miss overflows and be off

Also useful for sampling.

• Pure user events, how can you make sure only belongs

to your process?

Operating system can save/restore registers on context

switch
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Are counter results accurate?

• See my various papers

• Short answer is ususally, but more obscure might not be

• Intel/AMD also tend to overcount on interrupts

• How would you validate the counters themselves?

Exact assembly language program.

• Also chip companies care, but counter correctness is

not enough to stop a chip from shipping. They might

undocument (or errata) if you report a bug.
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Linux Version

• perf event open() system call. Really complex, see the

manpage.

• Old days was perfctr, then perfmon which required

patching kernel.

• Slowly looked like was getting merged, but then out

of nowhere Molnar introduced perf event which got in

quickly in 2.6.31 kernel

• Has issues but is mostly good enough these days.
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perf tool

• perf tool comes with kernel

• Can be used for doing measurement

• Will give a demo next class, but you can do something

like

perf stat ./xhpl

• Might be disabled by default for security reasons, at least

partly it is my fault.
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PAPI

• Layer of abstraction.

• Want to use counters on all kinds of supercomputers

without having to change for each?

• Also provides self-monitoring, can add “calipers” to your

code to measure things.
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Profiling

• Records summary information during execution

• Usually Low Overhead

• Implemented via Sampling (execution periodically

interrupted and measures what is happening) or

Measurement (extra code inserted to take readings)
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Profiling Tools

• Low Overhead – Using hardware counters, such as perf

• Small Overhead – Using static instrumentation, such as

gprof

• Large Overhead – Using dynamic binary instrumentation,

such as valgrind callgrind

• Exterme Overhead – full system simulator
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Compiler Profiling

• gprof

• gcc -pg

• Adds code to each function to track time spent in each

function.

• Run program, gmon.out created. Run “gprof

executable” on it.

• Adds overhead, not necessarily fine-tuned, only does

time based measurements.

• Pro: available wherever gcc is.
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DBI Profiling

• Valgrind / callgrind tool
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Tracing

• When and where events of interest took place

• Shows when/where messages sent/received

• Records information on significant events

• Provides timestamps for events

• Trace files are typically *huge*

• When doing multi-processor or multi-machine tracing,

hard to line up timestamps
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Using Perf
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perf tool
$ perf stat ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

Performance counter stats for ’./dgemm_naive 200’:

7239.152263 task-clock (msec) # 0.992 CPUs utilized

116 context-switches # 0.016 K/sec

0 cpu-migrations # 0.000 K/sec

357 page-faults # 0.049 K/sec

6,513,184,942 cycles # 0.900 GHz

<not supported> stalled-cycles-frontend

<not supported> stalled-cycles-backend

2,592,685,475 instructions # 0.40 insns per cycle

91,797,411 branches # 12.681 M/sec

974,817 branch-misses # 1.06% of all branches

7.299463710 seconds time elapsed
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• Many options. Can select events with -e

• Use perf list to list all available events

• Hundreds of events available on x86, not quite so many

on ARM.

• Understanding the results often requires a certain

knowledge of computer architecture.
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Perf Profiling

Automatically interrupts program and takes sample every

X instructions.

• perf record

• perf report

• perf annotate
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Skid

• Beware of “skid” in sampled results

• This is what happens when a complex processor cannot

stop immediately, so the reported instruction might be

off by a few instructions.

• Some processors do not have this problem. Recent Intel

processors have special events that can compensate for

this.
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Performance Data Analysis

Manual Analysis
• Visualization, Interactive Exploration, Statistical

Analysis

• Examples: TAU, Vampir

Automatic Analysis
• Try to cope with huge amounts of data by automatic

analysis

• Examples: Paradyn, KOJAK, Scalasca, Perf-expert
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