ECE 574 — Cluster Computing
Lecture 3

Vince Weaver
https://web.eece.maine.edu/~vweaver
vincent.weaverOmaine.edu

11am Barrows 133

23 January 2024

https://web.eece.maine.edu/~vweaver

Announcements

e HW#1 was graded, you should have gotten an e-mail

e If you did not do HW#1 for any reason (for example,
added the class last-minute) let me know, it it still
possible to do the assighment. Homeworks are 50% in

this class so you don't want to miss any if you can avoid
it.

e Weather is a reminder that even complex models backed
by large HPC systems are often (always?) wrong

-y 1

Speedup Review

e Speedup is the improvement in latency (time to run)

G — told

t’)’LG’LU

So if originally took 10s, new took 5s, then speedup=2.

e Good metric for serial code

Scalability

e How a workload behavesSas more processors are added
> =
b=number of processes (threads)
T is execution time of serial code
1) 1s execution time with p processes
e Linear scaling, ideal: S, =p, E, = 100%
e Real world it's usually less. Why?

e Super-linear scaling — possible but unusual

o Parallel efficiency: E, =

Strong vs Weak Scaling

e Strong Scaling —for fixed program size, how does adding
more processors help

e Weak Scaling — how does adding processors help with
the same per-processor workload

Strong Scaling

e Have a problem of a certain size, want it to get done
faster.

e Ideally with problem size N, with 2 cores it runs twice as
fast as with 1 core (linear speedup)

e *NOTE* can still be some amount of strong scaling even
if it's not linear!

e Often processor bound; adding more processing helps,
as communication doesn’'t dominate

e Hard to achieve for large number of nodes, as many

algorithms communication costs get larger the more
nodes involved

e Amdahl’'s Law limits things, as more cores don't help
serial code

e Improve by throwing CPUs at the problem.

Weak Scaling

e Have a problem, want to increase problem size without
slowing down.

e Ideally with problem size N with 1 core, a problem of
size 2*N just as fast with 2 cores.

e Often memory or communication bound.

e Gustafson's Law (rough paraphrase)
No matter how much you parallelize your code, there
will be serial sections that just can't be made parallel

e Improve by adding memory, or Improving

-y ;

communication?

Scaling Example

LINPACK on Rasp-pi cluster. What kind of scaling is here?

] Linear Scaling
5000% —=— N=5000
] N=8000
1 —=— N=10,000
N=19,000
—a— N=25,000
N=35,000

4000

MFLOPS
&)
S
S
S
|

2000 4

10004 //’/

e
0

8 16 32
Nodes

—_—
I’\)_
I;

There is some strong scaling but it quickly fades after 8
nodes.

There 1s much more prominent weak scaling, in order

to approach a linear speedup you have to increase the
workload as you add cores.

This is most likely due to the very slow network connections
In this particular cluster.

-y 10

Common Performance Analysis Methods

o Aggregate/Overall Measurements
o Wall clock time
o Hardware Performance Counters
e Profiling
e [racing

11

Where Performance Info Comes From

e User Level (instrumentation)
Add timing measurements to own code

e Kernel Level (kernel metrics)
Kernel tracks metrics on context switch

e Hardware Level (performance counters)
CPU hardware tracks performance independent of
software

/Y 12

Types of Performance Info

e Aggregate counts — total counts of events that happen

e Profiles — periodic snapshots of program behavior, often
oroviding statistical representations of where program
notspots are

e Traces — detailed logs of program behavior over time

/Y 13

Gathering Aggregate Counts

14

Measuring runtime — using time

$ time ./dgemm_naive 200
Will need 1280000 bytes of memory, Iterating 10 times

real Om7 .360s
user Om7.330s
Sys Om0O.000s

e Real — wallclock time

e User — time the program is actually running (how
calculated)

e Sys — time spent in the kernel

-y 15

time Corner Cases

e Can REAL be much larger than USER?
Related: Must USER+SYS = REAL?
On a heavily loaded multitasking system your program
might only get a fraction on the CPU power

e Can USER be greater than REAL?
yes, if multiprocessor

e Is the time command deterministic?
No. Lots of noise in a system. Can write whole papers
on why.

-y 16

e Which do you use in speedup calculations?

17

time Related Note on Measurements

e Ideally try to measure on an idle system

e Can turn off various features (ASLR, bind to cores)

e Even then, expect sometimes up to 5% variation run to
run

e |deally take *many* measurements and do things like
calculate standard deviation

e Be wary making changes to your code and reporting
speedups of under 10% because they might be noise

/Y 18

Hardware Performance Counters

e Registers that hold architectural performance counts
e Available on all modern CPUs

e Usually 2-8 of them, often 40-64 bits wide

e Possibly up to 100s of events available

®

Have registers you set to enable, start, stop, read value,
select event type

e Interface varies arch to arch, vendor to vendor, and even
chip revisions

e Other useful thing, hardware interrupt can be triggered

-y 19

when counter overflows. Why?
If you read infrequently, could miss overflows and be off
Also useful for sampling.

e Pure user events, how can you make sure only belongs
to your process?
Operating system can save/restore registers on context
switch

/Y 20

Are counter results accurate?

e See my various papers

e Short answer is ususally, but more obscure might not be

e Intel/AMD also tend to overcount on interrupts

e How would you validate the counters themselves?
Exact assembly language program.

e Also chip companies care, but counter correctness Iis
not enough to stop a chip from shipping. They might
undocument (or errata) if you report a bug.

/Y 21

Linux Version

e perf_event_open() system call. Really complex, see the
manpage.

e Old days was perfctr, then perfmon which required
patching kernel.

e Slowly looked like was getting merged, but then out
of nowhere Molnar introduced perf_event which got in
quickly in 2.6.31 kernel

e Has issues but is mostly good enough these days.

/Y 22

perf tool

e perf tool comes with kernel

e Can be used for doing measurement

e Will give a demo next class, but you can do something
like
perf stat ./xhpl

e Might be disabled by default for security reasons, at least
partly it is my fault.

-y 23

PAPI

e Layer of abstraction.

e Want to use counters on all kinds of supercomputers
without having to change for each?

e Also provides self-monitoring, can add “calipers” to your
code to measure things.

-y 24

Profiling

e Records summary information during execution
e Usually Low Overhead

e Implemented via Sampling (execution periodically
interrupted and measures what is happening) or
Measurement (extra code inserted to take readings)

-y 25

Profiling Tools

e Low Overhead — Using hardware counters, such as perf

e Small Overhead — Using static instrumentation, such as
gprof

e Large Overhead — Using dynamic binary instrumentation,
such as valgrind callgrind

e Exterme Overhead — full system simulator

-y 26

Compiler Profiling

e gprof

® gcc -pg

e Adds code to each function to track time spent in each
function.

e Run program, gmon.out created. Run “gprof
executable” on it.

e Adds overhead, not necessarily fine-tuned, only does
time based measurements.

e Pro: available wherever gcc is.

-y 27

DBI Profiling

e Valgrind / callgrind tool

28

Tracing

e When and where events of interest took place

e Shows when/where messages sent/received

e Records information on significant events

e Provides timestamps for events

e Trace files are typically *huge*

e When doing multi-processor or multi-machine tracing,
hard to line up timestamps

-y 29

Using Perf

perf tool

$ perf stat ./dgemm_naive 200
Will need 1280000 bytes of memory, Iterating 10 times

Performance counter stats for ’./dgemm_naive 200’:

7239.152263 task-clock (msec) : CPUs utilize
116 context-switches : K/sec
0 cpu-migrations : K/sec
357 page-faults : K/sec
6,513,184,942 cycles . GHz
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles—backend
2,592,685,475 instructions . insns per cy
91,797,411 branches . M/sec
974,817 branch-misses . of all branc

7.299463710 seconds time elapsed

e Many options. Can select events with -e
e Use perf list to list all available events

e Hundreds of events available on x86, not quite so many
on ARM.

e Understanding the results often requires a certain
knowledge of computer architecture.

-y 32

Perf Profiling

Automatically interrupts program and takes sample every
X Instructions.

e perf record
e perf report

e perf annotate

/Y 33

Skid

e Beware of “skid” in sampled results

e [his is what happens when a complex processor cannot
stop iImmediately, so the reported instruction might be
off by a few instructions.

e Some processors do not have this problem. Recent Intel
processors have special events that can compensate for
this.

-y 34

Performance Data Analysis

Manual Analysis
e Visualization, Interactive Exploration, Statistical

Analysis
e Examples: TAU, Vampir

Automatic Analysis
e Try to cope with huge amounts of data by automatic

analysis

e Examples: Paradyn, KOJAK, Scalasca, Perf-expert

-y 35

