
ECE 574 – Cluster Computing
Lecture 3

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11am Barrows 133

23 January 2024

https://web.eece.maine.edu/~vweaver


Announcements

• HW#1 was graded, you should have gotten an e-mail

• If you did not do HW#1 for any reason (for example,

added the class last-minute) let me know, it it still

possible to do the assignment. Homeworks are 50% in

this class so you don’t want to miss any if you can avoid

it.

• Weather is a reminder that even complex models backed

by large HPC systems are often (always?) wrong

1



Speedup Review

• Speedup is the improvement in latency (time to run)

S = told
tnew

So if originally took 10s, new took 5s, then speedup=2.

• Good metric for serial code

2



Scalability

• How a workload behaves as more processors are added

• Parallel efficiency: Ep =
Sp
p = Ts

pTp

p=number of processes (threads)

Ts is execution time of serial code

Tp is execution time with p processes

• Linear scaling, ideal: Sp = p, Ep = 100%

• Real world it’s usually less. Why?

• Super-linear scaling – possible but unusual

3



Strong vs Weak Scaling

• Strong Scaling –for fixed program size, how does adding

more processors help

• Weak Scaling – how does adding processors help with

the same per-processor workload

4



Strong Scaling

• Have a problem of a certain size, want it to get done

faster.

• Ideally with problem size N, with 2 cores it runs twice as

fast as with 1 core (linear speedup)

• *NOTE* can still be some amount of strong scaling even

if it’s not linear!

• Often processor bound; adding more processing helps,

as communication doesn’t dominate

• Hard to achieve for large number of nodes, as many

5



algorithms communication costs get larger the more

nodes involved

• Amdahl’s Law limits things, as more cores don’t help

serial code

• Improve by throwing CPUs at the problem.

6



Weak Scaling

• Have a problem, want to increase problem size without

slowing down.

• Ideally with problem size N with 1 core, a problem of

size 2*N just as fast with 2 cores.

• Often memory or communication bound.

• Gustafson’s Law (rough paraphrase)

No matter how much you parallelize your code, there

will be serial sections that just can’t be made parallel

• Improve by adding memory, or improving

7



communication?

8



Scaling Example

LINPACK on Rasp-pi cluster. What kind of scaling is here?

12 4 8 16 32

Nodes

0

1000

2000

3000

4000

5000

M
F

L
O

P
S

Linear Scaling

N=5000

N=8000

N=10,000

N=19,000

N=25,000

N=35,000

9



There is some strong scaling but it quickly fades after 8

nodes.

There is much more prominent weak scaling, in order

to approach a linear speedup you have to increase the

workload as you add cores.

This is most likely due to the very slow network connections

in this particular cluster.

10



Common Performance Analysis Methods

• Aggregate/Overall Measurements

◦ Wall clock time

◦ Hardware Performance Counters

• Profiling

• Tracing

11



Where Performance Info Comes From

• User Level (instrumentation)

Add timing measurements to own code

• Kernel Level (kernel metrics)

Kernel tracks metrics on context switch

• Hardware Level (performance counters)

CPU hardware tracks performance independent of

software

12



Types of Performance Info

• Aggregate counts – total counts of events that happen

• Profiles – periodic snapshots of program behavior, often

providing statistical representations of where program

hotspots are

• Traces – detailed logs of program behavior over time

13



Gathering Aggregate Counts

14



Measuring runtime – using time

$ time ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

real 0m7.360s

user 0m7.330s

sys 0m0.000s

• Real – wallclock time

• User – time the program is actually running (how

calculated)

• Sys – time spent in the kernel

15



time Corner Cases

• Can REAL be much larger than USER?

Related: Must USER+SYS = REAL?

On a heavily loaded multitasking system your program

might only get a fraction on the CPU power

• Can USER be greater than REAL?

yes, if multiprocessor

• Is the time command deterministic?

No. Lots of noise in a system. Can write whole papers

on why.

16



• Which do you use in speedup calculations?

17



time Related Note on Measurements

• Ideally try to measure on an idle system

• Can turn off various features (ASLR, bind to cores)

• Even then, expect sometimes up to 5% variation run to

run

• Ideally take *many* measurements and do things like

calculate standard deviation

• Be wary making changes to your code and reporting

speedups of under 10% because they might be noise

18



Hardware Performance Counters

• Registers that hold architectural performance counts

• Available on all modern CPUs

• Usually 2-8 of them, often 40-64 bits wide

• Possibly up to 100s of events available

• Have registers you set to enable, start, stop, read value,

select event type

• Interface varies arch to arch, vendor to vendor, and even

chip revisions

• Other useful thing, hardware interrupt can be triggered

19



when counter overflows. Why?

If you read infrequently, could miss overflows and be off

Also useful for sampling.

• Pure user events, how can you make sure only belongs

to your process?

Operating system can save/restore registers on context

switch

20



Are counter results accurate?

• See my various papers

• Short answer is ususally, but more obscure might not be

• Intel/AMD also tend to overcount on interrupts

• How would you validate the counters themselves?

Exact assembly language program.

• Also chip companies care, but counter correctness is

not enough to stop a chip from shipping. They might

undocument (or errata) if you report a bug.

21



Linux Version

• perf event open() system call. Really complex, see the

manpage.

• Old days was perfctr, then perfmon which required

patching kernel.

• Slowly looked like was getting merged, but then out

of nowhere Molnar introduced perf event which got in

quickly in 2.6.31 kernel

• Has issues but is mostly good enough these days.

22



perf tool

• perf tool comes with kernel

• Can be used for doing measurement

• Will give a demo next class, but you can do something

like

perf stat ./xhpl

• Might be disabled by default for security reasons, at least

partly it is my fault.

23



PAPI

• Layer of abstraction.

• Want to use counters on all kinds of supercomputers

without having to change for each?

• Also provides self-monitoring, can add “calipers” to your

code to measure things.

24



Profiling

• Records summary information during execution

• Usually Low Overhead

• Implemented via Sampling (execution periodically

interrupted and measures what is happening) or

Measurement (extra code inserted to take readings)

25



Profiling Tools

• Low Overhead – Using hardware counters, such as perf

• Small Overhead – Using static instrumentation, such as

gprof

• Large Overhead – Using dynamic binary instrumentation,

such as valgrind callgrind

• Exterme Overhead – full system simulator

26



Compiler Profiling

• gprof

• gcc -pg

• Adds code to each function to track time spent in each

function.

• Run program, gmon.out created. Run “gprof

executable” on it.

• Adds overhead, not necessarily fine-tuned, only does

time based measurements.

• Pro: available wherever gcc is.

27



DBI Profiling

• Valgrind / callgrind tool

28



Tracing

• When and where events of interest took place

• Shows when/where messages sent/received

• Records information on significant events

• Provides timestamps for events

• Trace files are typically *huge*

• When doing multi-processor or multi-machine tracing,

hard to line up timestamps

29



Using Perf

30



perf tool
$ perf stat ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

Performance counter stats for ’./dgemm_naive 200’:

7239.152263 task-clock (msec) # 0.992 CPUs utilized

116 context-switches # 0.016 K/sec

0 cpu-migrations # 0.000 K/sec

357 page-faults # 0.049 K/sec

6,513,184,942 cycles # 0.900 GHz

<not supported> stalled-cycles-frontend

<not supported> stalled-cycles-backend

2,592,685,475 instructions # 0.40 insns per cycle

91,797,411 branches # 12.681 M/sec

974,817 branch-misses # 1.06% of all branches

7.299463710 seconds time elapsed

31



• Many options. Can select events with -e

• Use perf list to list all available events

• Hundreds of events available on x86, not quite so many

on ARM.

• Understanding the results often requires a certain

knowledge of computer architecture.

32



Perf Profiling

Automatically interrupts program and takes sample every

X instructions.

• perf record

• perf report

• perf annotate

33



Skid

• Beware of “skid” in sampled results

• This is what happens when a complex processor cannot

stop immediately, so the reported instruction might be

off by a few instructions.

• Some processors do not have this problem. Recent Intel

processors have special events that can compensate for

this.

34



Performance Data Analysis

Manual Analysis
• Visualization, Interactive Exploration, Statistical

Analysis

• Examples: TAU, Vampir

Automatic Analysis
• Try to cope with huge amounts of data by automatic

analysis

• Examples: Paradyn, KOJAK, Scalasca, Perf-expert

35


