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Announcements

• HW#2 was posted

• If you missed getting an account slip for the homework

assignment, let me know
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Computer Architecture Review
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Parallel Computing – Single Core

• Most code written for serial execution, one step at a

time

• You can re-write it to try to do things in parallel (we’ll

get to that)

• What if the hardware could take your serial code and try

to get parallelism out of it for you?
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Simple CPUs

• Ran one instruction at a time.

• Could take one or multiple cycles (Instructions per Cycle

(IPC) 1.0 or less)

• Example – single instruction take 1-5 cycles?

Program Counter

Memory

+4

Address from

      ALU

Branch

Instruction

Decode

Opcode Immediate R0 R1 R2 Register File

ALU

Control
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Code Example – C
int i;

int x[128];

for(i=0;i <128;i++) {

x[i]=0;

}
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Optimizing Compiler

• First attempt at optimization is to have compiler

generate optimal assembly code

• Even today good compilers can often be beaten by skilled

assembly language programmers
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Code Example – ARM assembly
mov r0 ,#0 ; i=0

loop:

ldr r1 ,=x ; point r1 to X array

lsl r2 ,r0 ,#2 ; r2=i*4

mov r3 ,#0 ; value to store

str r3 ,[r1 ,r2] ; X[i]=0

add r0 ,r0 ,#1 ; i=i+1

cmp r0 ,#128 ; check if reached 128

bne loop ; loop if not equal

.bss

.lcomm x,128,4 ; reserve room for 128 ints
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Possible Optimizations

• Constant propagation?

• Code hoisting?

• ARM optimizations

barrel shifter

auto-increment

• Loop unrolling?

• Writing 64-bits of zeros rather than 32-bits
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Pipelined CPUs

• 5-stage MIPS pipeline

• From 2-stage to Pentium 4 31-stage

• Example – single instruction always take 5 cycles? But

what about on average? (Theoretical max IPC 1.0)

IF ID EX MEM WB
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Pipelined CPUs

• IF = Instruction Fetch.

Fetch 32-bit instruction from L1-cache

• ID = Decode

• EX = execute (ALU, maybe shifter, multiplier, divide)

Memory address calculated

• MEM = Memory – if memory had to be accessed,

happens now.

• WB = register values written back to the register file
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Data Hazards

Happen because instructions might depend on results from

instructions ahead of them in the pipeline that haven’t been

written back yet.

• RAW – “true” dependency – problem. Bypassing?

• WAR – “anti” dependency – not a problem if commit in

order

• WAW – “output” dependency – not a problem as long

as ordered

• RAR – not a problem
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Structural Hazards

• CPU can’t just provide. Not enough multipliers for

example
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Control Hazards

• How quickly can we know outcome of a branch

• Branch prediction? Branch delay slot?
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Branch Prediction

• Predict (guess) if a branch is taken or not.

• What do we do if guess wrong? (have to have some way

to cancel and start over)

• Modern predictors can be very good, greater than 99%

• Designs are complex and could fill an entire class
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Memory Delay

• Memory/cache is slow

• Need to bubble / Memory Delay Slot
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The Memory Wall

• Wulf and McKee

• Processors getting faster more quickly than memory

• Processors can spend large amounts of time waiting for

memory to be available

• How do we hide this?
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Caches

• Basic idea is that you have small, faster memories that

are closer to the CPU and much faster

• Data from main memory is cached in these caches

• Data is automatically brought in as needed.

Also can be pre-fetched, either explicitly by program or

by the hardware guessing.

• What are the downsides of pre-fetching?

• Modern systems often have multiple levels of cache.

Usually a small (32k or so each) L1 instruction and data,
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a larger (128k?) shared L2, then L3 and even L4.

• Modern systems also might share caches between

processors, more on that later

• Again, could teach a whole class on caches
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Exploiting Parallelism

• How can we take advantage of parallelism in the control

stream?

• Can we execute more than one instruction at a time?
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Multi-Issue (Super-Scalar)

• Decode up to X instructions at a time, and if no

dependencies issue at same time.

• Dual issue example. Can have theoretical IPC of 2.0

• Can have unequal pipelines.

EX EX

MEM MEM

WB WB

Fetch

Decode

Ins Queue
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Out-of-Order

• Tries to exploit instruction-level parallelism

• Instead of being stuck waiting for a resource to become

available for an instruction (cache, multiplier, etc) keep

executing instructions beyond as long as there are no

dependencies

• Need to insure that instructions commit in order

• What happens on exception? (interrupt, branch

mispredict, etc)
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• Register Renaming

• Re-order buffer

• Speculative execution / Branch Prediction?
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SIMD / Vector Instructions

• Flynn’s Taxonomy

• SISD – single instruction, single data, your normal serial

processor

• SIMD – single instruction, multiple data – one instruction

can act on many values in parallel

• MISD – multiple instruction, single data – wavefront or

pipeline? some debate about if this really exists

• MIMD – sort of like a cluster
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SIMD / Vector Instructions

• x86: MMX/SSE/SSE2/AVX/AVX2

semi-related FMA

• MMX (mostly deprecated), AMD’s 3DNow!

(deprecated)

• PowerPC Altivec

• ARM: Neon
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SSE / x86

• SSE (streaming SIMD): 128-bit registers XMM0 -

XMM7, can be used as 4 32-bit floats

• SSE2 : 2*64bit int or float, 4 * 32-bit int or float, 8x16

bit int, 16x8-bit int

• SSE3 : minor update, add dsp and others

• SSSE3 (the s is for supplemental): shuffle, horizontal

add

• SSE4 : popcnt, dot product
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AVX / x86

• AVX (advanced vector extensions) – now 256 bits,

YMM0-YMM15 low bits are the XMM registers. Now

twice as many.

Also adds three operand instructions a=b+c

• AVX2 – 3 operand Fused-Multiply Add, more 256

instructions

• AVX-512 – version used on Xeon Phis (knights landing)

and Skylake – now 512 bits, ZMM0-ZMM31
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SSE example (From Wikipedia)

Doing a 4 element single-prevision vector add would take

4 separate floating point adds:

vec_res.x = v1.x + v2.x;

vec_res.y = v1.y + v2.y;

vec_res.z = v1.z + v2.z;

vec_res.w = v1.w + v2.w;

With SSE you only need one add instruction:

movaps xmm0 , [v1] ;xmm0 = v1.w | v1.z | v1.y | v1.x

addps xmm0 , [v2] ;xmm0 = v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x

movaps [vec_res], xmm0
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Intrinsics
__m256i in1;

/* vmovdqa (%rcx),%ymm1 */

__m256i filter_avx = _mm256_load_si256( (__m256i *) filter );
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ARM NEON

• Cortex A8, optional on Cortex A9

• 64 or 128bit, but some procs break 128-bit into two

operations

• 8, 16, 32-bit ints, single-precision floating point
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ARM Scalable Vector Extension (SVE)

• Scale from 128 to 2048 bits transparently

• 32 scalable registers Z0-Z31, bottom 128 bits V0-V31

NEON registers

16 predicate registers P0-P15, fault register

• int/double/float/half

• There are intrinsics

• Can also try -fvectorize with compiler

• SVE2 adds more instructions beyond HPC workloads

UDOT – for machine learning

30



TBL and TBX – computer vision

CADD and CMLA – baseband networking

BDEP and BEXT – genomics

MATCH and NMATCH – server

31



SIMD Benefits

• Can be faster (2, 4, 8, 16, etc. things at once)
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SIMD Drawbacks

• Harder to code (assembly or clever compiler)

• Puts more pressure on memory.

• More registers to save at context switch
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