
ECE 574 – Cluster Computing
Lecture 6

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11am Barrows 133

1 February 2024

https://web.eece.maine.edu/~vweaver


Announcements

• HW#3 will be posted

• C coding. Not too horrible, (not as bad as ECE435) but

some array manipulation.

1



Workload for future Homeworks

• Before we can write parallel code, we need some serial

code as an example

• Matrix multiply is typical, but boring

• What else can we use that’s embarrassingly parallel, but

interesting?

2



Convolution

• https://en.wikipedia.org/wiki/Kernel_%28image_processing%29

• Specifically 2-D convolution

• Widely used in image processing

• Walk over every pixel in an image, convolving a matrix

over it. The new value is based on some combination of

the surrounding pixels.

• Usually a 3x3 grid, but can be larger

3

https://en.wikipedia.org/wiki/Kernel_%28image_processing%29


Common Convolution Matrices

• Identity =
0 0 0
0 1 0
0 0 0



• Blur =
1 1 1
1 1 1
1 1 1

 (need to normalize)

• Sharpen =
 0 −1 0
−1 5 −1
0 −1 0



• Emboss =
−2 −1 0
−1 1 1
0 1 2



• Sobel (edge detection) =
 1 2 1

0 0 0
−1 −2 −1

1 0 −1
2 0 −2
1 0 −1



4



Loading Graphics into a C array

• We’ll use libjpeg to do this

• How JPEG works is a bit beyond this class, but it will

decompress the image into an array of RGB pixels

• We can also use libjpeg to do the reverse, convert an

array to an image file

5



What does a framebuffer look like?

• Depends on many things

• Bits-per-pixel, 1bpp, 2bpp, 4bpp, 8bpp, 15bpp, 16bpp,

24bpp, 32bpp

• We will be using 24bpp, with RGB each being one byte

• Our image is a 3D array, but that’s hard to do in C

(especially when dynamically allocating memory) so we

will just do a 1D array

6



Aside: modern framebuffers are a luxury

• Might seem tricky to get bytes in right place

• On old Apple II system, weird interleaved framebuffer,

14 pixels per 2-bytes, 240p resolution, color clash

• Atari 2600 worse, only 20-bit *total* framebuffer, had

to “race the beam” to draw whole screen

• Even more recent, CGA / EGA/ VGA planar for

bandwidth reasons, would have to bank switch in

multiple planes to draw one pixel

• Famous Mode 13h nice linear array, 8bpp

7



• Even then it was palette (lookup table) based

8



One way to implement the convolution

There are many ways you can implement this, some will

be faster than others. The one shown below is definitely

not the fastest.

Below is *pseudo code*. It won’t compile, as you won’t be

able to do the triple array access as pictured, you’ll have

to access the values as a 1-D array as discussed in class.

9



for(x=1;x<width -1;x++) {

for(y=1;y<height -1;y++) {

for(color =0;color <3; color ++) {

sum =0;

sum+= filter [0][0]* old[x-1][y-1][ color];

sum+= filter [1][0]* old[x][y-1][ color];

sum+= filter [2][0]* old[x+1][y-1][ color];

sum+= filter [0][1]* old[x-1][y][ color];

sum+= filter [1][1]* old[x][y][ color];

sum+= filter [2][1]* old[x+1][y][ color];

sum+= filter [0][2]* old[x-1][y+1][ color];

sum+= filter [1][2]* old[x][y+1][ color];

sum+= filter [2][2]* old[x+1][y+1][ color];

/* Normalize if necessary */

/* (not necessary for Sobel) */

/* Saturate if necessary */

/* Make sure stays in 0 to 255 range */

(your code here)

/* Set the new value */

10



new[x][y][ color]=sum;

}

}

}

11



C array access

• a[x][y][color] should be done as

a[(y*xsize*3)+(x*3)+color]

• You might want to write a helper function that does this

for you.

• Remember in C that array indexes begin at 0, not 1.

• Why do things this way? You can’t use malloc() or

calloc() with a[x][y][c] syntax (or you can, but you have

to have pointers to points and one malloc per row, it

gets complex very quickly). Since we don’t know the

12



size of the image in advance it’s easier to do things with

a 1D array

13



Sobel Convolution Notes – Saturating Adds

• For Sobel we do not need to normalize the result, but

we do need to saturate

• If the results is greater than 255, set to 255, or if less

than zero, set to zero.

• Otherwise will wrap and give odd results.

14



Sobel Convolution Notes – Image Border

• What do we do for pixels on the edge of the image that

don’t have surrounding pixels?

• Do you wrap? Assume 0?

• For our code we will only convolve on pixels at least 1

pixel from the border, which results in the edge of the

final image being 0 (black)

15



Sobel Convolution Notes – Combining the
Results

• We will find the horizontal edge, (sobel x), the vertical

edge, (sobel y) and then combine the two

• To combine, for each element square the two results

then taking the square root.

• final[x][y][c] =
√

sobelx[x][y][c]2 + sobely[x][y][c]2

16



PAPI Usage Instructions – Setup

• The code will include papi.h and link against the library

with -lpapi

• Initialize with:

PAPI library init(PAPI VER CURRENT);

Check the result to see if it matches PAPI VER CURRENT

• All other functions should return PAPI OK if successful.

• If using pthreads need to do:

PAPI thread init(pthread self);

17



PAPI Usage Instructions – Creating
Eventsets

• Eventsets are just integers

int eventset=PAPI NULL;

• Gathered results are typically 64-bit integers

long long values[NUM];

Where NUM is the number of events you are measuring

at once.

• Create an eventset:

PAPI create eventset(&eventset);

18



• Available events can be seen with the papi avail and

papi native avail commands.

• Add an event. You can run multiple times to add

multiple events.

PAPI add named event(eventset,"PAPI TOT INS");

19



PAPI Usage Instructions – Instrumenting
the Code

• Before the code of interest do a

PAPI start(eventset);

• Afterward do a

PAPI stop(eventset,values);

and you can print the value or save it for later.

• When printing, remember the results are 64 bits.

printf("Result: %lld",values[0]);

20



PAPI Usage Instructions – Debugging

• The functions all return errors, so it’s best to check them

• If you don’t check for errors, it won’t crash, but you

might get strange (usually really high) results

• If you get an error returned, you can use

PAPI strerror() to look up the meaning

21



How to Optimize

• ROW vs Column Major? FORTRAN vs C? Comes down

to using cache in an expected way.

• Loop order? Again, want to access in a way that keeps

things in cache

• Loop unrolling? Avoids branch issues, etc.

• SIMD? Definitely a case where we could load all 4

channels and operate on them at once. Possibly multiple.

A bit advanced for this class though.

22



Hints for Debugging

• You don’t have to develop on the cluster, but I will test

there

If you run on own machine you’ll have to install PAPI

which might only be possible on Linux

• If your final results don’t look right, you can first try

dumping the jpeg of sobelx and sobely and getting those

working first

23



Getting Results off the Server

• How can you view the results?

• You can scp locally (port-redirection with scp needs

-P2131, note it’s a capital P)

• If you’re running X11 graphics on your machine, you can

ssh into the server with -Y option to forward a graphics

viewer like geeqie

• Some GUI scp/sftp clients will let you just double click

on images and it will pop them up

24



More Computer Arch Review

25



Multicore Systems

• Moore’s Law can’t make systems faster, so the extra

transistors are used for more cores

• Single Package: CMP (Chip-multiprocessor) or SMP

(Symmetric-multiprocessor)

• Multi-package: Multiple CMP packages in system.

26



CMP Diagram

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

27



Cache Coherency

• How do you handle data being worked on by multiple

processors, each with own cache of main memory?

• Cache coherency protocols.

• Many and varied. MESI is a common one

• Directory vs Snoopy

28



MESI

• Modified, Exclusive, Shared, Invalid

29



Barriers and Ordering

• On modern out-of-order execution, memory accesses can

happen out-of-order https://arangodb.com/2021/

02/cpp-memory-model-migrating-from-x86-to-arm/

• Sequential consistency – all happen in order

• Strong consistency – stores

• Weak consistency – can be arbitrarily reordered, only

barriers protect you

30

https://arangodb.com/2021/02/cpp-memory-model-migrating-from-x86-to-arm/
https://arangodb.com/2021/02/cpp-memory-model-migrating-from-x86-to-arm/


• A memory barrier instruction makes sure all previous

loads/stores finish before moving on

• Most important for things like locks, as well as memory-

mapped I/O

31



Ordering Example
y1=0

y2=0

y1=3

y2=4

Another core

x1=y1

x2=y2

What values of x1 and x2 can you get?

Strong:

x1=0,x2=0

x1=3,x2=0

x1=3,x2=4

Weak:

x1=0,x2=4

32



Hardware Multi-Threading

• Idea is to re-use a pipeline to execute multiple threads

at once, *without* fully replicating the entire CPU (so

less than multicore)

• You will have to replicate some things (program counter

for each, etc)

• Usually they appear to the CPU as full separate

processors even though they are not.

• Various ways to do this:

33



◦ Fine-grained – rotate threads every cycle

◦ Coarse-grained – rotate threads only if long latency

event happens (cache miss)

◦ Simultaneous – issue from any combination of threads,

to maximize use of pipeline (have to be superscalar)

• Why do this? Often on superscalar running only one

thread will leave parts idle, try to make use of these.

• Bad side effects?

Can actually slow down code (especially if both threads

34



trying to use same functional units, also if both using

memory heavily as cache is often shared)

• Sometimes see it talked about as SMT (Simultaneous

Multithreading), Intel Hyperthreading is more or less the

same thing

• Modern security issues, leak info between threads

35



SMT Diagram

PC
Ins Queue

PC
Ins Queue

PC
Ins Queue

36



Haswell EP Setup

CPU0

CPU1

CPU2

CPU3 CPU4

CPU5

CPU6

CPU7LLC0

LLC1

LLC2

LLC3 LLC4

LLC5

LLC6

LLC7

DIMM3

DIMM2

DIMM1

DIMM0

Home Agent
Mem Controller

QPI
PCIe

37



NUMA

Non-uniform memory access – some accesses will have to

cross to other processors, causing extra delay. How can

you optimize this?

38



Traditional NUMA Layout

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

39



Types of Clusters

• Shared-memory

◦ many CPUs, but one shared memory address space.

◦ Usually one copy of operating system.

◦ When write to memory, all CPUs can see it.

• Distributed

◦ Many systems spread across network

◦ Each has own memory

◦ For other CPUs to see data have to send message

across network.

40



Types of Clusters / Programming

• We’ll find shared memory is easier to program

Biggest ever? 8k SGI machines?

• Larger systems forced to use message-passing

41


