
ECE 574 – Cluster Computing
Lecture 7

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

7 February 2023



Announcements

• Homework #3 was posted. Don’t put it off until the

last minute!

• Lots of coding

• Later homeworks will build off of it, but don’t worry I

will provide solutions

• Behind on grading due to large number of faculty zoom

interviews as well as lovebyte deadline

1



Homework #3 Notes

• You can output intermediate sobel results for debugging

• If almost right except for a few areas, most likely forgot

to saturate

note you need to saturate after combine as well

• If you run into trouble, send me your code to look at

• PAPI: be sure to do things in right order

• PAPI: if get weird results, be sure to check error returns

from the functions. There’s a PAPI sterror() that

can help

2



Homework #2 Review – Measurements
Procs 1 2 4 8 16 32 64

Time 115 59 33 19 15 16 16
GFLOPS 46 90 162 2275 365 328 331
Speedup — 1.95 3.48 6.05 7.67 7.19 7.19
Peff — 0.98 0.87 0.76 0.48 0.22 0.11

• 3bi) Speedup: (t1/tp)

This year moving to 32 threads actually helped slightly

What is different? Kernel? Compiler? OpenBLAS?

Firmware?

• 3bii) Parallel efficiency: (Sp/p or T1/pTp)

• 3biii) Yes, time decreases as you add cores.

3



Not ideal strong scaling though.

Note: “weak” is not the same as “poor strong scaling”

• 3biv) No weak, didn’t test with sizes constant

How could we test this?

• 3bv Time is less as only dgemm, not malloc or

randomizing

• 3bvi More because user adds up all threads/cores

4



Homework #2 Review – perf record

• 3a) dgemm kernel (double-precision generic matrix-
matrix multiply. algorithm kernel (core) not Linux kernel)
If you got big time in kernel, you ran perf on time
46.34% xhpl xhpl [.] dgemm_kernel

14.95% xhpl [kernel.kallsyms] [k] syscall_exit_to_user_mode

5.30% xhpl [kernel.kallsyms] [k] entry_SYSCALL_64

4.82% xhpl [kernel.kallsyms] [k] syscall_return_via_sysret

2.95% xhpl xhpl [.] HPL_lmul

1.68% xhpl [kernel.kallsyms] [k] update_curr

1.62% xhpl [kernel.kallsyms] [k] __schedule

1.47% xhpl [kernel.kallsyms] [k] entry_SYSCALL_64_after_hwframe

1.26% xhpl [kernel.kallsyms] [k] pick_next_task_fair

1.13% xhpl [kernel.kallsyms] [k] __calc_delta.constprop.0

1.08% xhpl xhpl [.] HPL_rand

5



Homework #2 Review – perf annotate

0.32 : vbroadcastsd -0x60(%rdi),%ymm0

0.24 : vfmadd231pd %ymm0,%ymm1,%ymm4

0.28 : vfmadd231pd %ymm0,%ymm2,%ymm8

0.27 : vfmadd231pd %ymm0,%ymm3,%ymm12

0.21 : vbroadcastsd -0x58(%rdi),%ymm0

0.44 : vfmadd231pd %ymm0,%ymm1,%ymm5

0.19 : vfmadd231pd %ymm0,%ymm2,%ymm9

0.37 : vfmadd231pd %ymm0,%ymm3,%ymm13

0.09 : vbroadcastsd -0x50(%rdi),%ymm0

• in dgemm kernel()

vbroadcastd – broadcast 64-bit fp value from memory

and copy 4 times in 256-bit AVXregister

6



vfmadd231pd – fused multiply-add of packed doubles.

231 refers to the order of the operands (2*3+1, store in

1)

• 3c) skid

◦ Will :pp avoid the skid?

◦ Why no one thing stand out in profile?

Hand optimized assembly, people have worked a long

time on optimizing this getting low hanging stuff

◦ Both instructions only listed as latency 1 in the agner

fogg, though that doesn’t count cache access

7



Homework #2 – Weak Scaling Info

If ideal strong scaling, then parallel efficiency would be

closer to 1. Not enough results for weak scaling.

To get 1G/core, roughly 2
3 ∗ n

3 = 500B ∗ p
Cores N=20k Size=3.2G Size=1G/core time Speedup GFLOPs

1 119s 3.2G 11,000 9000 11.5 —- 42.5

2 64s 1.6G 16,000 11500 14 0.82 72

4 37s 0.8G 22,360 14400 14 0.82 139

8 22s 0.4G 31,600 18200 18 0.63 222

16 18s 0.2G 44,700 22900 26 0.44 304

32 18s 0.1G 63,240 28800 47 0.24 336

64 18s 0.05G 89,000 36000 93 0.12 334

8



From Last time

• Go over NUMA briefly

• Go over Shared Memory vs Distributed Briefly

9



Parallel Programming!

10



Single-Thread Processes

• A process is a program running on a computer, usually

being managed by an operating system

• Process has one view of memory, one program counter,

one set of registers, one stack

11



Multi-tasking / Multi-Programming

• Most OSes give illusion of running multiple processes at

once (even on a single core system)

• Rapidly switch between all running processes, hundreds

of times a second

• Context switch – each process has own program counter

saved and restored as well as other state (registers)

• Virtual Memory is used to give each process illusion they

have sole access to memory in the machine

• OSes often have many things running, often in

12



background.

On Linux/UNIX sometimes called daemons

Can use top or ps to view them.

13



Processes: OS Interface

• Creating new: on Unix its fork/exec, windows

CreateProcess

• Children live in different address space, even though it

is a copy of parent

• Process termination: what happens?

Resources cleaned up. atexit() routines run.

How does it happen?

exit() syscall (or return from main).

Killed by a signal.

14



Error

• Unix process hierarchy.

Parents can wait for children to finish, find out what

happened

not strictly possible to give your children away, although

init inherits orphans

• Process control block.

15



Could you build a multi-cpu program using
just Processes?

• Yes

• Need to pass data between the different processes

• Network – use sockets (network on UNIX domain

sockets)

Message Passing

• Shared Memory – interfaces like SYSV Shared Memory

or mmap() could create memory region shared by two

processes

16



• This is a pain to code for, ways to automate?

17



Threads

• Default: each process has one address space and single

thread of control.

• It might be useful to have multiple threads share one

address space

◦ GUI: interface thread and worker thread?

◦ Game: music thread, AI thread, display thread?

◦ Webserver: can handle incoming connections then pass

serving to worker threads

◦ Why not just have one process that periodically

18



switches?

19



Multithreading

• Implementation:

Each thread has its own PC

Each thread has its own stack

• Why do it?

shared variables, faster communication

multiprocessors?

mostly if does I/O that blocks, rest of threads can keep

going

allows overlapping compute and I/O

20



• Problems:

What if both wait on same resource (both do a scanf

from the keyboard?)

On fork, do all threads get copied?

What if thread closes file while another reading it?

21



Thread Implementations

• Cause of many flamewars over the years

22



User-Level Threads (N:1 one process many
threads)

• Benefits

– Kernel knows nothing about them. Can be

implemented even if kernel has no support.

– Each process has a thread table

– When it sees it will block, it switches threads/PC in

user space

– Different from processes? When thread yield() called

it can switch without calling into the kernel (no slow

23



kernel context switch)

– Can have own custom scheduling algorithm

– Scale better, do not cause kernel structures to grow

• Downsides

– How to handle blocking? Can wrap things, but not

easy. Also can’t wrap a pagefault.

– Co-operative, threads won’t stop unless voluntarily give

up.

Can request periodic signal, but too high a rate is

inefficient.

24



Kernel-Level Threads (1:1 process to
thread)

• Benefits

– Kernel tracks all threads in system

– Handle blocking better

• Downsides

– Thread control functions are syscalls

– When yielding, might yield to another process rather

than a thread

25



– Might be slower

26



Hybrid (M:N)

• Can have kernel threads with user on top of it.

• Fast context switching, but can have odd problems like

priority inversion.

27



What about co-routines

• Not found in C

• Sort of like co-operatively scheduled software threads

• functions can be suspended at various points and re-

started later

• Less issues than full threads as only one can run at a

time, simplifying locking

28



POSIX Threads (pthreads)

• Standardized thread interface

• Standard cross-platform set of routines to use

29



Linux Threading – Historical

• Linux original thread implementation was horrible

software based

• Originally used only userspace implementations. GNU

portable threads.

• LinuxThreads – use clone syscall, SIGUSR1 SIGUSR2 for

communicating.

Could not implement full POSIX threads, especially with

signals. Replaced by NPTL

Hard thread-local storage

30



Needed extra helper thread to handle signals

Problems, what happens if helper thread killed? Signals

broken? 8192 thread limit? proc/top clutter up with

processed, not clear they are subthreads

31



Linux Threading – NPTL

• NPTL – Native POSIX Thread Library

• Kernel threads

• Clone syscall, new futex system calls.

• Developed around 2003 or so by Drepper and Molnar at

RedHat, Kernel 2.6

• Why kernel? Linux has very fast context switch

compared to some OSes.

• Need new C library/ABI to handle location of thread-

local storage

32



On x86 the fs/gs segment used. Others need spare

register.

• Signal handling in kernel

• Clone handles setting TID (thread ID)

• exit group() syscall added that ends all threads in

process, exit() just ends thread.

exec() kills all threads before execing

Only main thread gets entry in proc

33



Pthread Programming

• based on this really good tutorial here:

https://hpc-tutorials.llnl.gov/posix/

34



Pthread Programming

• Changes to shared system resources affect all threads in

a process (such as closing a file)

• Identical pointers point to same data

• Reading and writing to same memory is possible

simultaneously (with unknown origin) so locking must

be used

35



When can you use?

• Work on data that can be split among multiple tasks

• Work that blocks on I/O

• Work that has to handle asynchronous events

36



Models

• Pipeline – task broken into a set of subtasks that each

execute serial on own thread

• Manager/worker – a manager thread assigns work to a

set of worker threads. Also manager usually handles I/O

static worker pool – constant number of threads dynamic

worker pool – threads started and stopped as needed

• Peer – like manager/worker but the manager also does

calculations

37



Shared Memory Model

• All threads have access to shared memory

• Threads also have private data

• Programmers must properly protect shared data

38



Thread Safety

• Is a function called thread safe?

• Can the code be executed multiple times simultaneously?

• The main problem is if there is global state that must

be remembered between calls. For example, the strtok()

function.

• As long as only local variables (on stack) usually not an

issue. (avoid globals)

Can be addressed with locking.

39



POSIX Threads

• 1995 standard

• Various interfaces:

1. Thread management: Routines for manipulating

threads – creating, detaching, joining, etc. Also for

setting thread attributes.

2. Mutexes: (mutual exclusion) – Routines for creating

mutex locks.

3. Condition variables – allow having threads wait on a

lock

40



4. Synchronization: lock and barrier management

41



POSIX Threads (pthreads)

• A C interface. There are wrappers for Fortran.

• Over 100 functions, all starting with pthread

• Involve “opaque” data structures that are passed around.

• Include pthread.h header

• Include -pthread in linker command to compiler

42


