
ECE 574 – Cluster Computing
Lecture 10

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11am, Barrows 133

15 February 2024

Announcements

• HW#5 will be posted, OpenMP

• I will send out HW#3 Grades

• PAPI support for your own computers

It lags if you’re non on a Supercomputer

Working on getting newer Intel chips (Ice/Alder/Raptor

Lake) supported

1

HW#3 – General Comments

• Please put results in the README file and submit using

“make submit”

• Comment your code!

• Don’t ignore compiler warnings!

• You can compare your butterfinger results against the

provided ones. md5sum can be used for that.

• Issues I saw:

◦ You need to saturate to 255 in combine function too

sqrt(255*255+255*255) is greater than 255.

2

If you wrap around in 8-bits your results will be off.

◦ Be sure the borders are 1 to X-1 and 1 to Y-1

◦ You can’t use the modulus operator to saturate

3

HW#3 – Butterfinger Results

Butterfinger was a pet guinea pig from long ago.

Note on benchmark images, most famous for image

processing “Lena”

time ./sobel ./butterfinger.jpg

output_width=320, output_height=320, output_components=3

SOBELX L3 CACHE MISSES: 1554 CYCLES 9436089

SOBELY L3 CACHE MISSES: 0 CYCLES 9362614

COMBINE L3 CACHE MISSES: 3 CYCLES 6574264

real 0m0.048s user 0m0.024s sys 0m0.004s

4

• Why 0 cache misses for SOBELY?

Cache. 320*320*3=307k

IN, SOBEL X, SOBEL Y, COMBINED, so 300k*4 =

1.2MB or so

• Spacestation is 4288*2929*3 = 37MB or so

• Haswell-EP has 20MB of L3 cache

• Reading causes misses to read input in, rest are writing

out so while not necessarily hits, with write allocate

cache do not seem to be accounted for as misses

• Multiple runs the cache misses are lower, probably due

to operating system disk cache

5

HW#3 – Haswell-EP Brief Cache Overview

• Haswell-EP caches

◦ memory – 200+ cycles best case

◦ 20MB of L3, 20MB, 64B/line (30-60 cycles?)

◦ 256kB per-core L2, 64B/line, 8-way (12-cycles)

◦ 32kB per-core L2, 64B/line, 8-way (4 cycles)

• Chunks of fast memory close to CPU

• Multiple levels

• Memory broken up into cacheline sized chunks (64-byte

on HSW-EP)

6

• When access an address, all 64-B brought in even if not

need rest

• When cache full, something is kicked out to make room

(usually oldest)

• Want to take advantage of spatial and temporal locality

• With butterfinger all fits in L3 cache

7

HW#3 – Earth, Straight implementation of
pseudo-code

./sobel ./earth_06_03_2018.jpg

output_width=2048, output_height=2048, output_components=3

SOBELX L3 CACHE MISSES: 318,572 CYCLES 559,078,407

SOBELY L3 CACHE MISSES: 285,851 CYCLES 556,456,869

COMBINE L3 CACHE MISSES: 593,838 CYCLES 335,950,332

real 0m0.759s user 0m0.688s sys 0m0.032s

12MB, fits in cache?

8

HW#3 – Space Station, Straight
implementation of pseudo-code

./sobel ./space_station_hires.jpg

output_width=4288, output_height=2929, output_components=3

L3 CACHE MISSES: 1,135,130 CYCLES 1,670,349,917

L3 CACHE MISSES: 1,125,314 CYCLES 1,638,624,347

L3 CACHE MISSES: 1,751,949 CYCLES 967,758,034

real 0m1.741s user 0m1.647s sys 0m0.048s

9

perf report

67.88% sobel sobel [.] generic_convolve

20.27% sobel sobel [.] main

0.74% sobel [unknown] [k] 0xffffffffa1e00a27

0.33% sobel libjpeg.so.62.2.0 [.] 0x0000000000037902

0.27% sobel [unknown] [k] 0xffffffffa1e0015f

0.26% sobel libjpeg.so.62.2.0 [.] 0x0000000000037912

0.24% sobel libjpeg.so.62.2.0 [.] jpeg_fill_bit_buffer

perf annotate

0.39 | add %r11d,%ebx

2.86 | cmp $0xff,%ebx

3.57 | cmovg %eax,%ebx

| output_image->pixels[(y*output_ima

0.04 | mov (%r12),%eax

0.78 | imul %r14d,%eax

0.05 | add %esi,%eax

10

0.42 | imul 0x8(%r12),%eax

0.06 | mov 0x10(%r12),%rsi

0.69 | add %ecx,%eax

0.18 | test %ebx,%ebx

7.08 | cmovs %edi,%ebx

1.82 | cltq

perf annotate last time

sum += filter[0][2]*(input_image->p

0.61 | movslq %r11d,%r11

0.66 | movzbl (%rcx,%r11,1),%esi

| convert():

| return (y*xsize*depth)+(x*depth)+color;

42.22 | lea (%r9,%rbx,1),%r11d

| generic_convolve():

11

• Conditional move?

• Compiler crazy. All mixed up. In-lined the combine

routine.

• 4288*2929=36MB (larger than L3)

12

HW#3 – Loop Order Optimization

• How is an array laid out in memory?

Row-major (C) vs Column-major (Fortran)

• Default with loop x then y, are actually walking columns.

Worst case.

• Switch order of loops, things get a lot better.

time ./sobel_improved ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3

SOBELX L3 CACHE MISSES: 21,246 CYCLES 882,000,608

SOBELY L3 CACHE MISSES: 19,556 CYCLES 881,998,207

COMBINE L3 CACHE MISSES: 1,241,446 CYCLES 1,183,759,970

real 0m1.181s user 0m1.112s sys 0m0.052s

13

HW#3 – Loop Unrolling

• Loop unrolling. Unroll the color loop (explicitly do the

three things 0, 1, 2 and put the values in.

• Can have benefits. Change all occurrences of “color” to

be a constant, which can be optimized.

• Remove branches, which can be slow or mispredicted.

• More code for out-of-order processor to work with and

try to do in parallel.

• Downsides: if gets too large: no longer fit in instruction

cache or loop stream detector.

14

HW#3 – Other Optimizations

• Other optimizations, often are things the compiler does

for you with -O2.

• Hoisting (move things out of loop that only need to be

done once)

• Simplification. Lots of things.

• Try another compiler (clang?)

• Take a compiler class.

15

HW#3 – Convert to one single Loop

No need to iterate X and Y and Color, just walk through

output linearly. Really you have three pointers of input

(line above, current line, below).

time ./sobel_improved ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3

SOBELX L3 CACHE MISSES: 15,703 CYCLES 411,148,087

SOBELY L3 CACHE MISSES: 15,334 CYCLES 411,284,853

COMBINE L3 CACHE MISSES: 1,245,842 CYCLES 1,186,204,125

real 0m0.924s user 0m0.848s sys 0m0.044s

16

HW#3 – Same for Combine

No need to offset, just start at beginning of x and y and

write to output, doing the combine operation.

time ./sobel_improved ./IMG_1733.JPG output_width=3888, output_height=2592, out$

L3 CACHE MISSES: 16,188 CYCLES 410,983,833

L3 CACHE MISSES: 14,850 CYCLES 411,059,831

L3 CACHE MISSES: 36,652 CYCLES 496,394,104

real 0m0.690s

user 0m0.628s

sys 0m0.040s

17

ISRA= interprocedural scalar replacement of aggregates,

39.71% sobel_improved sobel_improved [.] generic_convolve.isra.0

24.51% sobel_improved sobel_improved [.] main

2.41% sobel_improved [kernel.kallsyms] [k] clear_page_c_e

1.23% sobel_improved libjpeg.so.62.2.0 [.] jpeg_fill_bit_buffer

1.02% sobel_improved libjpeg.so.62.2.0 [.] 0x0000000000039356

0.83% sobel_improved [kernel.kallsyms] [k] page_fault

18

HW#3 – SIMD (SSE/AVX)

• SIMD = Single Instruction, multiple data

One instruction (say add) can add multiple values at

once

• On intel chips SSE, SSE2, etc. Up to AVX/AVX2 on

newer systems

• 256-bit wide registers. So sixteen 16-bit values (can do

integer), Four 64-bit doubles, etc.

19

• Large number of these registers, xmm0 (128bit) ymm0

(256bit) zmm0 (512bit on newer machines)

• One way is to program in assembly language with some

obscure opcodes: an example PMADDWD 16-bit integer

parallel 128-bit multiply and add

• On recent gcc and other compilers there are “intrinsics”

to use in C, for example you can use mm madd epi16()

to do a PMADDWD instruction

20

HW#3 – Initial SIMD try

9 values from the three input pointers (16-bit)

A B C X D E F X G H I X X X X X

The sobel filter values (16-bit)

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

Multiply and add all in parallel

A1+B2 C3+0 D4+E5 F6+0 G7+H8 I9+00 0+0 0+0

Rearrange and then do a "horizontal add"

A1+B2+G7+H8 C3+I9 D4+E5 F6+0

Another Horizontal Add

0 0 A1+B2+G7+H8+C3+I9 D4+E5+F6

Another Horizontal Add

0 0 0 A1+B2+G7+H8+C3+I9+D4+E5+F6

Convert to 16-bit result, saturate, and be done

The 18 ops (9mul/9add) turned into 4 ops

21

Problems

• Math is very fast, handfull of instructions

• Problem is getting memory from 3 pointers with 3-byte

offsets into registers

• This is a “scatter/gather” problem found often with

SIMD (and GPU)

• There are instructions to try to gather the values

together, but not really suited for this

• Once you do it manually performance is actually worse

than regular code

22

• Challenge: if picture not multiple of 16-bytes

23

HW#3 – Improved SIMD – Can we do
better?

With many problems: re-think outside the serial box

Load full 16 bytes of pixel info from the three pointers,

multiply by the 9 values in sobel filter, shifting right by 3

A * RGB RGB RGB RGB RGB RGB R

B * RGB RGB RGB RGB RGB R

C * RGB RGB RGB RGB R

D * RGB RGB RGB RGB RGB RGB R

E * RGB RGB RGB RGB RGB R

F * RGB RGB RGB RGB R

G * RGB RGB RGB RGB RGB RGB R

H * RGB RGB RGB RGB RGB R

+ I * RGB RGB RGB RGB R

===================================

RGB RGB RGB RGB R 13 values of result

Use compare instruction to saturate in parallel

Store out the 13 bytes at once

24

So (18*13) operations reduced to (~20) I think. Still haven’t tried this yet

25

Back to OpenMP

26

Reductions

• Used when a loop is used to combine a large number of

results to one variable

• Common example: vector dot product
for(i=0;i<N;i++) {

dot_product=dot_product +(a[i]*b[i]);

}

• normally this would be bad in parallel, as race on the

dot product value

• with special reduction command the work is split up in

chunks before, but at the end these are automatically

combined for the final result

27

Reduction Example
for (int i=0;i <10;++i) {

x = x op expr

}

• expr is a scalar expression that does not read x

• limited set of operations, +,-,*

• variables in list have to be shared
#pragma omp parallel for reduction (+:sum) schedule(static ,8)

for(i = 0; i < N; i++) {

/* Why does this need to be a reduction?*/

sum = sum + i*a[i];

}

printf("sum=%lld\n",sum);

28

OMP Sections – Another way to make code
parallel

#pragma omp parallel sections

#pragma omp section

// WORK 1

#pragma omp section

// WORK 2

• Will run the two sections in parallel at same time.

• Useful if you have multiple chunks of code that’s not a

loop but still can run at the same time

• You could implement this with for() and a case statement

(gcc does it that way?)

29

Synchronization functions

• Can manually set up locks

• omp init lock()

• omp destroy lock()

• omp set lock()

• omp unset lock()

• omp test lock()

30

OMP Synchronization

• Instead of manually setting locks, can use

synchronization directives and OMP will do the hard

work for you

31

OMP Synchronization – Master
#pragma omp master

• OMP MASTER – only master executes instructions in

this block

32

OMP Synchronization – Critical
#pragma omp critical

• OMP CRITICAL – only one thread is allowed to execute

in this block

• OMP ATOMIC – like critical but for only one instruction,

a memory access faster

33

OMP Synchronization – Barrier

• OMP BARRIER – force all threads to wait until all are

done before continuing

• there’s an implicit barrier at the end of for, section, and

parallel blocks

• It is useful if using nowait in loops

34

OMP Flush directive

• #pragma omp flush(a,b)

• Compiler might cache variables, etc, so this forces a and

b to be up to date across threads

• TODO: lookup better explanation at how this can

happen

35

OMP – Calling Functions

• can call functions

• functions outside of directives can still have OpenMP

directives in them (orphan directives)

36

Nested Parallelism

• If you have nested loops, which should you put the for

directive in front of

• Ideally the one with the most iterations (and usually the

outer one?)

• If you loop has fewer iterations than you have cores then

some threads may go idle

37

Collapsing Loops

• can collapse loops if perfectly nested

• perfectly nested means that all computation happens in

inner-most loop

• omp set nested(2); can enable nesting

• Also collapse(2) in the parameter list

• TODO: read up more on limitations

38

OpenMP Versions

• 5.0

◦ task reduction

◦ not-equals can appear in loop comparisons

• 4.0

◦ support for accelerators (offload to GPU, etc)

◦ SIMD support (specify simd)

◦ better error handling

◦ CPU affinity

◦ task grouping

39

◦ user-defined reductions

◦ sequential consistent atomics

◦ Fortran 2003

• 3.1

• 3.0

◦ tasks

◦ lots of other stuff

40

OpenMP Pros and Cons

• Pros

◦ portable, simple

◦ can gradually add parallelism to code; serial and

parallel statements (at least for loops) are more or

less the same.

• Cons

◦ Can still have race conditions

◦ Runs best on shared-memory systems

◦ Requires compiler support (not a problem?)

41

OpenMP Examples

See the course website for a link to a tarball with all the

examples.

42

Simple

openmp simple.c

◦ just creates a parallel region and prints thread number.

◦ By default, how many threads are set up on the Haswell-

EP machine?

◦ Try with OMP NUM THREADS=4

43

Scope

TODO: private/shared variable example

44

for

openmp for.c

• Parallelizes the memory init loop.

• Thread number set from command line and the

num threads() directive.

• What happens to performance as you add threads?

45

static schedule

openmp static schedule.c

• Creates 100 threads with chunksize of 1.

• Threads are assigned loop indices at statically at start of

loop

• In example, thread 0 is fastest and 4 the slowest.

• You can see thread 0 runs through its assignment fast

and then sits around doing nothing while the rest slowly

finish.

46

dynamic schedule

openmp dynamic schedule.c

• Creates 100 threads with chunksize of 1.

• Threads are assigned loop indices dynamically.

• Each thread starts with one, but zero runs all the rest

because it is so fast.

47

Changing Chunksize

openmp dynamic chunk.c

• Creates 100 threads with a prime number chunksize.

• Threads are assigned same amount of time to run.

• Spread mostly evenly but the last set of chunks, only

two threads get assigned while the others have nothing

to do.

• Switch to “guided” and the chunksize decreases over

time and the ending is a bit more balanced.

48

nested for

openmp for nest.c

• Looks at which loop you should add the for in front of

• If it’s a loop w/o many iterations it limits your nesting

49

collapsing for

openmp for collapse.c

• You can collapse loops

• Useful if not many iterations in outer loop

50

critical

openmp critical.c

• Has a parallel loop, but a shared global counter inside.

• What happens without a critical section? (race

condition)

• Put in the critical section get right results.

• But slow!

• No need to manually add mutexes, OpenMP abstracts

that away.

51

section

openmp section.c

• For parallelism when you don’t have a loop

• Have multiple functions that have no dependencies, want

to run at same time?

• No matter how many threads you have, only can run up

to the maximum number of sections at a time.

52

reduction

openmp reduction.c

• What if you calculate something in each loop iteration,

but want to sum them all in the end? Something like a

vector dot product?

• You could put it in a for loop, sum = sum+ i ∗ a[i] but
race condition on shared sum.

• Could put in critical section but that’s slow as we saw.

• Instead can use special reduction directive.

53

simd reduction

openmp simd reduction.c

https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40

• simd directive

• Supported by recent GCC (5.0 and later)

• Tries to map your code into SSE/AVX vector instructions

if available on your processor.

• Our example turns out runs *slower*. Possibly our input

set is not big enough.

• Can look at assembly code to verify it is making SIMD

54

code:

objdump --disassemble-all openmp simd reduction

• Also you can use gcc -S to generate assembly.

look for pmul and xmm registers

55

offload

Can offload to GPU or MIC.

https://gcc.gnu.org/wiki/Offloading

• Need separate compiler for component.

• Support really isn’t there yet(?) verify that

56

HW#5 Preview

• Will use OpenMP for sobel

• Coarse version – use OMP Sections to run sobelx and

sobely at same time

• Fine version – use OMP for directive to do fine grained

parallelism

57

Show off Lovebyte entries

• 32 byte oldschool got 1st place

https://www.youtube.com/watch?v=-pbPeGJ_mMA

• 1koldschool got 2nd place

https://www.youtube.com/watch?v=sK_UM4act7s

58

