
ECE 574 – Cluster Computing
Lecture 12

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11am, Barrows 133

22 February 2024

https://web.eece.maine.edu/~vweaver

Announcements

• Midterm Next Thursday (February 29th)

More details/review in class Tuesday

• HW#4 Grades will be out soon

• HW#6 will be posted (maybe late)

• Project info posted to website

• There is a privilege escalation bug in glibc/syslog on

Linux, had to update the C library on haswell-ep.

Hopefully it didn’t break anything

1

Brief Midterm Topics

• One piece of paper with notes (one-sided, 8.5”x11”)

• Be sure to know Speedup/Parallel Efficiency

• Know difference between shared mem and distributed

system

• Know about pthreads and locking

• Know about OpenMP

• Know about MPI

2

MPI continued

Some references

https://hpc-tutorials.llnl.gov/mpi/

http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

https://cvw.cac.cornell.edu/MPIcc/default

3

https://hpc-tutorials.llnl.gov/mpi/
http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf
https://cvw.cac.cornell.edu/MPIcc/default

How to send data efficiently to all ranks?

• Rank 0 could send to each individual, take a while

• Some sort of tree, 0 to 1 and 2, 1 sends to 3 and 4, etc.

• Can we broadcast instead?

4

Collective Communication

• All must participate or there can be problems.

• Do not take tag arguments

• Can only operate on MPI defined data types, not custom

• Operations

◦ Synchronization – all processes wait

◦ Data Movement – broadcast, scatter-gather

scatter = take one structure and split among processes

gather = take data from all processes and combine it

◦ Reduction – one process combines results of all others

5

MPI Barrier()

• All processes wait at this point.

• MPI Barrier (comm)

6

MPI Bcast()

MPI_Bcast()
root

7

MPI Bcast() – notes

• MPI_Bcast (&buffer ,count ,datatype ,root ,comm);

• Sends data from the root rank to each other rank.

• Is blocking; when encountering a Bcast all nodes wait

until they have received the data.

• There is no need to receive; the root sends the data and

all other ranks will receive, just with the one command

8

MPI Scatter()

root
MPI_Scatter()

rank 0
send_data

recv_data

recv_data
rank 0

rank 1

rank 2

rank 3

recv_data

recv_data

9

MPI Scatter() – notes

• MPI_Scatter (&send_data ,sendcnt ,sendtype ,&recv_data ,

recvcnt ,recvtype ,root ,comm);

• Copies sendcnt sized chunks of sendbuf to each rank’s

recvbuf

• root also gets a share of data (just a local copy)

• Can use

MPI IN PLACE as the recv data to avoid needing

separate input and output arrays

10

MPI Gather()

MPI_Gather()
root

recv_data

rank 2

send_data

send_data

send_data

rank 3
send_data

rank 1

rank 0

11

MPI Gather() – notes

• MPI_Gather (&send_data ,sendcnt ,sendtype ,&recv_data ,

recvcount ,recvtype ,root ,comm);

• Copies recvcount sized chunks of sendbuf from each

rank to recvbuf in root, offset by recvcount for full

result

• NOTE values start at beginning of each rank’s sendbuf

• Can use

MPI IN PLACE as the send data to avoid needing

separate input and output arrays (complex though, see

example)

12

Scatter/Gather Boundary issues

• *NOTE* If the size of the data you are sending is not

an even multiple of the number of ranks you’ll have to

manually handle the extra

• How?

◦ Have the root manually handle the extra at end?

◦ Pad your data to be a multiple of number of ranks and

ignore the extra?

◦ MPI_Scatterv() and MPI_Gatherv() routines let you send

vectors (chunks of varying length) but complex to use

13

MPI Scatterv()

• int MPI_Scatterv (&send_data ,sendcounts [],displs[],

sendtype ,&recv_data ,recvcount ,recvtype ,root ,comm);

• Vector scatter

• Send non-contiguous chunks

• In addition to regular scatter parameters, a list of start

offsets and lengths.

14

MPI Gatherv()

• int MPI_Gatherv (&send_data ,sendcount ,sendtype ,

&recv_data , recvcounts [], displs[],

recvtype , root , comm);

• Vector gather

• Can gather non-contiguous chunks

• In addition to regular scatter parameters, a list of start

offsets and lengths.

15

MPI Reduce()

• MPI_Reduce(void* send_data , void* recv_data ,

int count , MPI_Datatype datatype , MPI_Op op ,

int root , MPI_Comm communicator);

• Operations

◦ MPI MAX,MPI MIN – max, min

◦ MPI SUM – sum

◦ MPI PROD – product

◦ MPI LAND, MPI BAND – logical/bitwise and

◦ MPI LOR,MPI BOR – logical/bitwise OR

◦ MPI LXOR,MPI BXOR – logical/bitwise XOR

16

◦ MPI MAXLOC,MPI MINLOC – value and location

◦ Can also create custom

17

MPI Allgather()

• Gathers, to all

• Equivalent of gathering back to root, then rebroadcasting

to all

18

MPI Allreduce()

• MPI_Allreduce(void* send_data , void* recv_data , int count ,

MPI_Datatype datatype , MPI_Op op , MPI_Comm communicator);

• Like an MPI Reduce followed by an MPI Bcast

• Once the reduction is done, broadcasts the results to all

processes

19

MPI Reduce scatter()

• Does a reduction, then scatters the results

20

MPI Alltoall()

• Scatter data from all to all

21

MPI Scan()

• Lets you do partial reductions.

22

Custom Data Types

• You can create custom data types that aren’t the MPI

default, sort of like structures.

• Open question: can you just cast your data into integers

and uncast on the other side? This is not recommended

and might have issues on a heterogeneous cluster

23

Groups vs Communicators

• Can create custom groups if you don’t want to broadcast

to all.

• Use groups to create Communicators, then can use

instead of WORLD

24

Virtual Topologies

• Your workload might map to a geometric shape (grid or

graph)

• In a mesh type problem you might only want to talk to

the 4 surrounding ranks and none of the others, so might

be handy if can be placed in hardware to take advantage

of that

• Doesn’t have to match underlying hardware

25

Examples

See the provided tar file with example code.

26

Running MPI code

• mpiexec -np 4 ./mpi test

Runs on 4 ranks

note the space between np and 4 is important and things

won’t work if you leave it out

• You’ll often see mpirun instead. Some implementations

have that, but it’s not the official standard way.

27

Running MPI code with slurm

• sbatch -n X time coarse.sh

Runs on X ranks

Even on multi-node cluster might run some on same

machine if it has multiple cores.

28

Send Example

• mpi send.c

• Run with mpiexec -np 4 ./mpi send

• Sends 1 million integers (each with value of 1) to each

node

• Each adds up 1/4th then sends only the sum (a single

int) back

• Notice this is a lot like pthreads where we have to do a

lot of work manually.

• Things to note:

29

◦ MPI_Init() at start

passes command line args, on most implementations

this will essentially broadcast the command line args

across all ranks so

◦ MPI_Comm_size() to get number of ranks

◦ MPI_Comm_rank() to get our rank

◦ MPI_Send() in this case only from rank 0

◦ MPI_Recv() can use status value to get size, source, and

tag

30

Blocking vs NonBlock Example?

• mpi nonblock.c

31

Wtime (Wallclock Time) Example

• mpi wtime.c

• Same as previous example. but with timing

• Unlike PAPI, the time is returned as a floating point

value

32

Barrier Example

• mpi barrier.c

• Each machine sleeps some time based on rank

• All wait at barrier until last one arrives

• Note: seeing all printfs because in this case all ranks on

same machine. This might not happen when running on

a real cluster

33

Bcast Example

• mpi bcast.c

• Same buffer on each machine

• At the broadcast function, one sends its version of the

buffer and the rest wait until they receive the value.

• In the end they all have the same value

34

Scatter Example

• mpi scatter.c

• Instead of sending all of A, breaks it into chunks and

sends it to B in each rank.

• Note that while the program runs ordered as expected,

the printfs might not reflect this

35

Gather Example

• mpi gather.c

• Each rank has its own copy of A which it sets to entirely

its rank number

• Then a gather happens on rank0, of one int each. So

what should B have in it? (0, 1, 2, 3, ...)

• What happens if prime number of ranks like 7. Boundary

issue.

36

Gather Offser Example

• mpi gather offset.c

• Way to gather *not* from start of array

• Have to do some pointer mater

37

Gatherv Example

• mpi gatherv.c

• Need to allocate counts and offsets arrays and fill in.

• Can special case to handle uneven ending.

38

Gatherv MPI IN PLACE

• mpi gatherv in place.c

• Turns out you have to special case rank 0 and use

MPI IN PLACE, for other ranks just set receive buffer

to NULL

39

Reduce Example

• mpi reduce.c

• Instead of waiting in a loop for tasks finishing and then

adding up the results one by one, use a reduction instead.

• Many MPI routines are convenience things that could be

done by a sequence of separate commands.

40

HW#6 Preview

• Suggested coarse implementation

◦ Get rank and size

◦ Load the jpeg. Only in Rank0. Could you load it in

all? Why or why not?

◦ Need to tell other processes the size of our images.

image.xsize, image.ysize, image.depth. Why? So can

allocate proper sized structures on each.

◦ How can do this? Just send 3 integers. Could set up

custom struct but not worth it. How send this array of

41

3 vars? Set up array. Bcast it? Send/receive to each,

one at a time? Which is most efficient?

◦ Allocate space for the output images
new_image.pixels=malloc(image.x*image.y*

image.depth*sizeof(char));

sobel_x.pixels

sobel_y.pixels

◦ Use MPI Bcast to broadcast image data from rank0

to other ranks. Note that Bcast acts as a send from

the root source (usually root 0) but as a receive on

all other ranks (there’s no need to separately have the

other ranks receive)
result = MPI_Bcast(image.pixels , /* buffer */

42

image.x*image.y*image.depth ,/* count */

MPI_CHAR , /* type */

0, /* root source */

MPI_COMM_WORLD);

◦ Split up the work, you know your rank and total, so if

4 and you are #2, then you should calculate for X/4,

so 0..(X/4-1), (x/4)..(x/4*2-1), etc. How to handle

non-even multiple? Last rank should calc extra

◦ Once it is done, send back. How? MPI Gather();
MPI_Gather(new_image.pixels , /* source buffer */

sobel_x.depth*sobel_x.x*

(sobel_x.y/numtasks), /* count */

MPI_CHAR , /* type */

sobel_x.pixels , /* receive buffer */

43

sobel_x.depth*sobel_x.x*

(sobel_x.y/numtasks), /* count */

MPI_CHAR , /* type */

0, /* root source */

MPI_COMM_WORLD);

Note, it gathers from the beginning of the buffer, but

put it in the right place on the root. Also, how to

handle the leftover bit?

◦ Suggest you just do combine in rank#0, will in next

HW do more fine grained

◦ Write out result. Remember to only write out on

rank#0 (what happens if do so on all?)

44

Additional notes on MPI

• Hard to think about. Running on different machine, so

setting variables *does not* get set on all, like it does

with OpenMP or pthreads

• Tricky: before you can send to rest, they have to know

how big of an area to allocate to store it in. How will

they know this?

• MPI does not give good error messages. OpenMPI worse

than MPICH. Will often get segfault, hang forever, or

45

weird stuff where it runs 4 single-threaded copies of

program rather than one 4-threaded

• Many of the commands are a bit non-intuitive

46

MPI Debugging (HW#6) notes

• MPI is *not* shared memory

• Picture having 4 nodes, each running a copy of your

program *without* MPI.

Also picture the various MPI routines as a network socket

(or web browser query).

Things initialized the same in all will have same values,

no need to initialize.

Things initialized in only one node will need to be

somehow broadcast for the values to be the same in all.

47

• Problems debugging memory issues.

Valgrind should work, but Debian compiles MPI with

checkpoint support which breaks Valgrind :(

Mpirun supposed to have -gdb option, doesn’t seem to

work.

• What does work is mpiexec -n num xterm -e gdb

./your app but this depends on you running X11 plus

logging into Haswell-EP with X forwarding (-Y) enabled

• The bug most people hit is improper bounds, leading to

segfault. You can debug that with printfs of your bounds

• MPI does give useful error messages sometimes

48

• Some of the problem is malloc/calloc

49

Other MPI Notes

• MPI Gather(sendarray, 100, MPI INT, rbuf, 100,

MPI INT, root, comm);

rbuf ignored on all but root

• All collective ops are blocking by default, so you don’t

need an implicit barrier

• MPI Gather(), same as if each process did an

MPI Send() and the root note did in a loop

MPI Receive() incrementing the offset.

50

• MPI Gather() aliasing

cannot gather into same pointer, will get an aliasing

error

Can use MPI IN PLACE instead of the send buffer on

rank0.

Why is this an error? Partly because you cannot alias in

Fortran. Just avoids potential memory copying errors.

What happens if your gathers overlap?

• Can you handle non-even buffer sizes with MPI Gather?

No. Two options.

◦ One, just handle in one of other threads (either master

51

or send/receive from other)

◦ Two, use MPI Gatherv() where you specify the

displacement and sizes of what you want to gather

52

