
ECE 574 – Cluster Computing
Lecture 14

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11am, Barrows 133

5 March 2024

https://web.eece.maine.edu/~vweaver


Announcements

• HW#6 was posted. Tentatively due Friday.

• Midterm still being graded.

• Academic honesty discussion (please don’t share code,

especially if it’s before the homework deadline)

1



HW#4 Finally Graded

• Most issues were with splitting up workload

Some attempts were overly complex, if you have a lot of

trouble it might be best to try something simpler

• Another issue was forgetting the top/bottom rows should

not be calculated (border)

2



HW#6 Cluster fairness

• If your job gets stuck, be nice and kill it (scancel)

• The node isn’t currently enforcing times. I could set it

up to do so but worried I’d break things

• sbatch scripts I give you have 10 minute timeout, you

can lower that if you want to be safer

3



HW#6 – Yet Again

• I know you’ve heard this before, but maybe as people

have tried the code it will make more sense

• This is probably the most difficult assignment

4



HW#6 – Step #1, Broadcast

• Load jpeg in rank0

• Broadcast xsize, ysize, depth to all

• Non-rank0 set image.xsize, image.ysize, image.depth

• Non-rank0 allocate image.pixels

• Broadcast image data (note: to image.pixels, not

image), be sure CHAR not INT

• I added simple checksum you can verify it worked

5



HW#6 – Step #2, Convolve

• Split up work per-rank

• Simplest way is to have ystart as rank*(ysize/num ranks

and yend as (rank+1)*(ysize/num ranks

• This looks like it might overlap, but if in loop use < it

should be OK (is it problem if you do overlap?)

• Be sure you handle skipping y=0 and y=(ysize-1) cases.

Do that *after* you calculate split or you can miss lines

• Be sure the leftover rows get calculated. Easiest way is

just have the last rank have yend=ysize (not balanced

6



but simple)

7



HW#6 – Step #3, Gather

• Gather is annoying because it gathers from the beginning

of an array, but by default our convolve() routine puts

the results at different locations in each rank

• Three ways to handle this:

◦ Adjust the convolve routine to subtract off ystart when

doing output so the results end up at the start of the

array

◦ When done the convolve, use memcpy() to copy

memory to the start

8



◦ In the gather call, instead of just putting

sendbuf as newimage, you can have offsets like

&newimage[rank*(ysize/ranks)*xsize*3] this is easy to

get wrong as it’s pointer math

9



HW#6 – Step #4, Leftover

• Getting to step #3 is most important, which is why

this is worth fewer points. This is more for spacestation

example rather than butterfinger (which is 320x320 so

very divisible)

• Most straightforward way is to replace Gather() with

Gatherv().

• You will need to set up two arrays, one with offsets and

ones with lengths. This is tricky as these are bytes, so

you can re-use your yoffsets from before but you’ll need

10



to multiply by xsize and depth

• For the last rank just have the length have the extra part.

This is mildly tricky to calculate, use the % operator to

get the remainder.

11



HW#6 – Common Failures

• Top of image there, rest is black – usually this means

you haven’t adjusted your data before gathering, and

gather is grabbing from the top of your image which is

empty on non-rank0

• Top is fine, but weirdly offset and maybe rainbow for

rest – this happens if you gather in (ysize*xsize*3)/ranks

chunks rather than (ysize/ranks)*xsize*3. Those look

like they are the same, but it’s an integer divide so

truncating means the latter will grab things in a non-

12



multiple of the rowsize.

• Looks correct but md5sum doesn’t match – this is usually

because you forgot to handle the top/bottom border, or

else your ystart/yend ranges have small gaps in them

13



Reliability in HPC

Good reference is a class I took a long time ago, CS717 at

Cornell:

http://greg.bronevetsky.com/CS717FA2004/Lectures.html

14

http://greg.bronevetsky.com/CS717FA2004/Lectures.html


Sources of Failure

• Software Failure

◦ Buggy Code

◦ System misconfiguration

• Hardware Failure

◦ Failed capacitors

◦ Loose wires

◦ Tin whiskers (lead-free solder)

◦ Lightning strike

◦ Radiation

15



◦ Moving parts wear out

• Malicious Failure

◦ Hacker attack

• Environment issues

◦ Fire in datacenter

◦ Loss of cooling during heat wave

16



Types of fault

• Permanent Faults – same input will always result in same

failure

• Transient Faults – go away, temporary, harder to figure

out

17



What do we do on faults?

• Detect and recover?

• Just fail?

• Can we still get correct results?

18



Metrics

• MTBF – mean time before failure

• FIT (failure in Time)

One failure in billion hours. 1000 years MTBF is 114FIT.

Zero error rate is 0FIT but infinite MTBF Designers just

FIT because additive.

• Nines. Five nines 99.999% uptime (5.25 minutes of

downtime a year)

Four nines, 52 minutes. Six nines 31 seconds.

• Bathtub curve

19



Architectural Vulnerability factor

• Some bit flips matter less

• (branch predictor) others more (caches) some even more

(PC)

• Parts of memory that have dead code, unused values

• Low mantissa bits in floating bit numbers

• Colors in graphics shown for only a frame

20



Things you can do for reliable Hardware

21



Hardware Replication / Redundancy

• Lock step – Have multiple machines / threads running

same code in lock-step Check to see if results match. If

not match, problem. If replicated a lot, vote, and say

most correct is right result.

• RAID – (redundant array of inexpensive disks)

• Memory checksums – caches, busses

• Power conditioning, surge protection, backup generators,

UPS

22



• Hot-swappable redundant hardware

23



Lower Level (Inside your Computer)

• Replicate units (ALU, etc)

• Replicate threads or important data wires

• CRCs and parity checks on all busses, caches, and

memories

24



Lower-Level Problems

25



Soft errors/Radiation

• Chips so small, that radiation can flip bits. Thermal and

Power supply noise too.

• Soft errors – excess charge from radiation. Usually not

permanent.

• Sometime called SEU (single event upset)

26



Radiation

• Neutrons: from cosmic rays, can cause “silicon recoil”

Can cause Boron (doped silicon) to fission into Li and

alpha.

• Alpha particles: from radioactive decay

• Cosmic rays – higher up you are, more faults Denver

3-5x neutron flux than sea level. Denver more than here.

Airplanes. Satellites and space probes are radiation-

hardened due to this.

• Smaller devices, more likely can flip bit.

27



Shielding

• Neutrons: 3 feet concrete reduce flux by 50%

• alpha: sheet of paper can block, but problem comes

from radioactivity in chips themselves

28



Case Studies

• “May and Woods Incident” first widely reported problem.

Intel 2107 16k DRAM chips, problem traced to ceramics

packaging downstream of Uranium mine.

• “Hera Problem” IBM having problem. 210Po

contamination from bottle cleaning equipment.

• “Sun e-cache” Ultra-SPARC-II did not have ECC on

cache for performance reasons. High failure rate.

29



Hardware Fixes

• Using doping less susceptible to Boron fission

• Use low-radiation solder

• Silicon-on-Insulator

• Double-gate devices (two gates per transistor)

• Larger transistor sizes

• Circuits that handle glitches better.

30



Memory Fixes

• ECC code

• spread bits out. Right now can flip adjacent bits, flip

too many can’t correct.

• Memory scrubbing: going through and periodically

reading all mem to find bit flips.

31



Extreme Testing

• Single event upset characterization of the Pentium MMX

and Pentium II microprocessors using proton irradiation”,

IEEE Transactions on Nuclear Science, 1999.

• Pentium II, took off-shelf chip and irradiated it with

proton. Only CPU, rest shielded with lead. Irradiate

from bottom to avoid heatsink

• Various errors, freeze to blue screen. no power glitches

or “latchup” 85% hangs, 14% cache errors no ALU or

FPU errors detected.

32



Memory Failures

• Memory Errors in Modern Systems

ASPLOS 2015

• Battling Borked Bits

IEEE Spectrum December 2015

33



Intentional Memory Failures?

• Rowhammer

• DRAM is just holding RAM contents in capacitors, which

leak away and need to be constantly refreshed

• Need to refresh every 32 to 64ms

• If you access a memory location a lot, it can also make

nearby locations drain faster and make them have bit

flips

34


