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Announcements

• HW#7 due Monday

• Don’t forget project topics were due today! Please send

if you haven’t

• Reminder about talk on Friday

• Reminder office hours cancelled Monday due to Faculty

Interview talk
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GPUs in the News

• Future of AMD vs CUDA

https://www.hpcwire.com/2023/10/05/how-amd-may-get-across-the-cuda-moat/

• NVIDIA just announce Blackwell GPU

◦ Named for David Blackwell, mathematician

◦ Successor to Hopper, 5x performance (at 4 bit fp)

◦ 20 PFLOPs (at 4 bit fp), 300W? B100?

◦ Two dies, 10TB/s NVLINK, 8 HBM3e stacks (192GB)

◦ Tower of them get get over an exaflop (a lot of power,

and again 4 bit fp, for AI)
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Interfaces for 3D Graphics

• OpenGL – SGI (Khronos)

• DirectX – Microsoft (Direct3d)

• Vulkan (sort of next gen OpenGL. Lower level, closer to

hardware)

• Metal – from Apple

• WebGL – javascript/web

• OpenGL ES – embedded subset

3



3D Graphics

• Two common ways to do 3D graphics

◦ Ray tracing, very accurate, but slow

◦ Rasterization, low quality, but fast enough to do in

real time

• Can do either completely in software on CPU (and people

did), but much faster if you accelerate with hardware
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Ray-tracing / Ray-casting

• TODO: diagram

• Objects placed in 3d space

• Rays of light traced from eye through each pixel on

screen until hit object

• Based on material they hit, reflect, refract, take on color,

etc

• Can do reverse where light source sends out rays and

you bounce them around until they hit pixel on screen
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Question: how does Hardware Raytrace
work

• Accelerate in hardware ray-tracing, though usually only

partially

• NVIDIA: Optix Library

• You describe how rays behave

• Details are a bit hard to get

6



Ray-marching

• Just a place holder, it’s a related technique often used in

size-coded demoscene productions and I’ve been meaning

to learn more about it
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Rasterization

• TODO: show diagram

• Objects made up of many triangles (or quads)

• Send vertices to card

• Project to 2d screen

• Broken up to pixels and shaded/textured

Color/shading based on angle with light source (normals)

• Clipping, depth
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Rasterization on GPU

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly
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read)

• Write out to framebuffer (mostly write)

• Z-buffer for depth/visibility

10



Rasterization Downsides

• Can’t calculate shadows (have to do hacks)

• Can’t easily do transparency (mirrors) or refraction

(lenses)

• On the plus side it is fast
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GPU Pipeline

• Old / Traditional

◦ Implement rasterization in fixed hardware

◦ Fixed pipeline (lots of triangles).

• Modern

◦ Much more flexible, programmable almost general-

purpose compute units

◦ Old pipeline can still be implemented in software via

the fancier interface
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GPUs

• Display memory often broken up into tiles (improves

cache locality)

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)

• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing
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GPGPUs

• Can we use GPUs as an accelerator?

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment
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Is GPGPU worth it?

• Newer example: (TODO, UPDATE)

– Cascade Lake, 1 TFLOP (64-bit floating point)

– NVIDIA 3090 36 TFLOPs

• Older example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS
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Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization
Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write
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Key Idea

• using many slimmed down cores

• have single instruction stream operate across many cores

(SIMD)

• avoid latency (slow textures, etc) by working on another

group when one stalls

• Avoid memory latency with calculation, not cache (which

is how CPUs do it)
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Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism need fast access to memory to avoid

stalls

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one
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GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit? 8? 4?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

• highly parallel
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GPU Challenges

• Originally optimized for 3d-graphics, not always ideal for

other things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• serial code

• a lot of control flow

• lot of off-chip memory transfers
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GPGPU Programming

• GPU companies do not like to reveal what their chips do

at the low/assembly level

• Abstraction provided for programming them

◦ CUDA (Nvidia)

◦ OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

◦ ROCm (Radeon Open Compute Platform) (AMD)

◦ OpenACC?
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Shader Programming

• There are competitions. Also see shadertoy.com

• Vertex Shader

◦ Vertex transform

◦ Object space to clip space

◦ Compute colors, normals, texture co-ords

◦ Can displace/distort (move vertices: wave flag)

◦ Can animate (move vertices: move fish)

• Fragment Shader

◦ Compute and color
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◦ Get data from vorteces and textures

◦ Can make better materials. Glossy, reflections, bumpy,

shadows
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GLSL Shader Programming

• Similar to C code

• Based on OpenGL

• vertex

◦ Each time screen drawn main() called once per vertex

◦ Massively parallel

◦ Have vars. Can get positions

• Fragment

◦ Each time screen drawn main() called once per pixel

◦ Can get x/y
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Example Shader 3.0 (DX9) Capabilities –
Vertex Processor

• They are up to Pixel Shader 5.0 now

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:
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◦ EXP, EXPP, LIT, LOGP (exponential)

◦ RCP, RSQ (reciprocal, r-square-root)

◦ SIN, COS (trig)
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Example Shader 3.0 (DX9) capatbilities–
Fragment Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)
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NVIDIA GPUs
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NVIDIA Generations

• Kepler

• Maxwell

• Pascal

• Turing (consumer)/Volta (pro)

• Ampere

• Lovelace/Hopper

• Blackwell
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NVIDIA Workstation vs Gaming

• Quadro (Workstation) vs Geforce (Gaming) (note from

2023, they renamed these)

◦ Quadro generally more RAM. higher Bus width

◦ Fancier Drivers

◦ Optimized for CAD type stuff and compute, rather

than games

◦ Higher reliability

◦ Quadro better support for double-precision floats

◦ More compute cores
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◦ Power limits
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GPU hardware in my Lab

• Can use these for projects. I mostly get these for power

measurement tests.

• NVIDIA RTX A2000 in Skylake

◦ 6GB GDDR6, 192-bit, 288 GB/s

◦ Ampere, PCIe4x16

◦ 3328 CUDA cores, 104 tensor cores, 26 RT cores

◦ 8 TFLOPS single-precision, RT 15.6 TFLOPS, Tensor

64 TFLOPS

◦ 70W, DirectX 12.07, Vulkan 1.2
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• NVIDIA RTX A2000 GA106 in RaptorLake

• Roughly same as above but with 12GB RAM

• NVIDIA Quadro P2000 in Skylake (old)

◦ 5GB GDDR5, 160-bit, 140 GB/s

◦ 1024 cores, Pascal, PCIe3x16

◦ 75W, DirectX 12.0, Vulkan 1.0

• NVIDIA Quadro P400 in Haswell-EP

◦ 2GB GDDR5, 64-bit, up to 32 GB/s

◦ 256 cores, Pascal architecture

◦ 30W, OpenGL 4.5, DirectX 12.0

◦ Low-power for server, as runs in 1U rack
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• NVIDIA Quadro K2200 in Quadro

◦ So old the drivers don’t want to support it anymore

◦ 4GB GDDR5, 128-bit 80 GB/s

◦ 640 cores, Maxwell architecture

◦ 68W, OpenGL 4.5, DirectX 11.2
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CUDA Programming background

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
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CUDA – installing

• On Linux need to install the proprietary NVIDIA drivers

• Have to specify nonfree on Debian.

• Debates over the years whether NVIDIA can have

proprietary drivers; no one sued yet. (Depends on

whether they are a ”derived work” or not. Linus refuses

to weigh in)

• Sometimes have issues where drivers won’t install

(currently having that issue on some of my machines)
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GPGPU Summary

• CPUs designed for fastest single-thread performance

Lots of transistors for caching (to hide memory latency),

control flow (branch predictors), caches

• GPUs designed to run as many threads as possible as

once

Use other methods to hide memory latency (mostly by

moving to other threads if one batch is waiting)
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Programming a GPGPU (CUDA/OpenCL)

• Create a “kernel” which is a small GPU program that

runs on a single thread. This will be run on many cores

at a time.

• Allocate memory on the GPU and copy input data to it

• Launch the kernel to run many times in parallel. The

threads operate in lockstep, all executing the same

instruction in each thread.

• How is conditional execution handled? a lot like on

ARM. If/then/else. If the particular thread does not
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meet the condition, it just does nothing until the other

condition finishes executing.

• If more threads are needed the available on the GPU,

may need to break the problem up into smaller batches

of threads.

• Once computing is done, copy results back to the CPU.
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CPU vs GPU Programming Difference

• The biggest difference: NO LOOPS

• You essentially collapse your loop, and run all the loop

iterations simultaneously.
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Flow Control, Branches

• Only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution
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