
ECE 574 – Cluster Computing
Lecture 17

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11am, Barrows 133

21 March 2024

https://web.eece.maine.edu/~vweaver


Announcements

• HW#7 due Monday

• Don’t forget project topics were due today! Please send

if you haven’t

• Reminder about talk on Friday

• Reminder office hours cancelled Monday due to Faculty

Interview talk

1



GPUs in the News

• Future of AMD vs CUDA

https://www.hpcwire.com/2023/10/05/how-amd-may-get-across-the-cuda-moat/

• NVIDIA just announce Blackwell GPU

◦ Named for David Blackwell, mathematician

◦ Successor to Hopper, 5x performance (at 4 bit fp)

◦ 20 PFLOPs (at 4 bit fp), 300W? B100?

◦ Two dies, 10TB/s NVLINK, 8 HBM3e stacks (192GB)

◦ Tower of them get get over an exaflop (a lot of power,

and again 4 bit fp, for AI)

2

https://www.hpcwire.com/2023/10/05/how-amd-may-get-across-the-cuda-moat/


Interfaces for 3D Graphics

• OpenGL – SGI (Khronos)

• DirectX – Microsoft (Direct3d)

• Vulkan (sort of next gen OpenGL. Lower level, closer to

hardware)

• Metal – from Apple

• WebGL – javascript/web

• OpenGL ES – embedded subset

3



3D Graphics

• Two common ways to do 3D graphics

◦ Ray tracing, very accurate, but slow

◦ Rasterization, low quality, but fast enough to do in

real time

• Can do either completely in software on CPU (and people

did), but much faster if you accelerate with hardware

4



Ray-tracing / Ray-casting

• TODO: diagram

• Objects placed in 3d space

• Rays of light traced from eye through each pixel on

screen until hit object

• Based on material they hit, reflect, refract, take on color,

etc

• Can do reverse where light source sends out rays and

you bounce them around until they hit pixel on screen

5



Question: how does Hardware Raytrace
work

• Accelerate in hardware ray-tracing, though usually only

partially

• NVIDIA: Optix Library

• You describe how rays behave

• Details are a bit hard to get

6



Ray-marching

• Just a place holder, it’s a related technique often used in

size-coded demoscene productions and I’ve been meaning

to learn more about it

7



Rasterization

• TODO: show diagram

• Objects made up of many triangles (or quads)

• Send vertices to card

• Project to 2d screen

• Broken up to pixels and shaded/textured

Color/shading based on angle with light source (normals)

• Clipping, depth

8



Rasterization on GPU

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly

9



read)

• Write out to framebuffer (mostly write)

• Z-buffer for depth/visibility

10



Rasterization Downsides

• Can’t calculate shadows (have to do hacks)

• Can’t easily do transparency (mirrors) or refraction

(lenses)

• On the plus side it is fast

11



GPU Pipeline

• Old / Traditional

◦ Implement rasterization in fixed hardware

◦ Fixed pipeline (lots of triangles).

• Modern

◦ Much more flexible, programmable almost general-

purpose compute units

◦ Old pipeline can still be implemented in software via

the fancier interface

12



GPUs

• Display memory often broken up into tiles (improves

cache locality)

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)

• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing

13



GPGPUs

• Can we use GPUs as an accelerator?

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment

14



Is GPGPU worth it?

• Newer example: (TODO, UPDATE)

– Cascade Lake, 1 TFLOP (64-bit floating point)

– NVIDIA 3090 36 TFLOPs

• Older example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS

15



Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization
Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write

16



Key Idea

• using many slimmed down cores

• have single instruction stream operate across many cores

(SIMD)

• avoid latency (slow textures, etc) by working on another

group when one stalls

• Avoid memory latency with calculation, not cache (which

is how CPUs do it)

17



Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism need fast access to memory to avoid

stalls

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one

18



GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit? 8? 4?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

• highly parallel

19



GPU Challenges

• Originally optimized for 3d-graphics, not always ideal for

other things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• serial code

• a lot of control flow

• lot of off-chip memory transfers

20



GPGPU Programming

• GPU companies do not like to reveal what their chips do

at the low/assembly level

• Abstraction provided for programming them

◦ CUDA (Nvidia)

◦ OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

◦ ROCm (Radeon Open Compute Platform) (AMD)

◦ OpenACC?

21



Shader Programming

• There are competitions. Also see shadertoy.com

• Vertex Shader

◦ Vertex transform

◦ Object space to clip space

◦ Compute colors, normals, texture co-ords

◦ Can displace/distort (move vertices: wave flag)

◦ Can animate (move vertices: move fish)

• Fragment Shader

◦ Compute and color

22

shadertoy.com


◦ Get data from vorteces and textures

◦ Can make better materials. Glossy, reflections, bumpy,

shadows

23



GLSL Shader Programming

• Similar to C code

• Based on OpenGL

• vertex

◦ Each time screen drawn main() called once per vertex

◦ Massively parallel

◦ Have vars. Can get positions

• Fragment

◦ Each time screen drawn main() called once per pixel

◦ Can get x/y

24



Example Shader 3.0 (DX9) Capabilities –
Vertex Processor

• They are up to Pixel Shader 5.0 now

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

25



◦ EXP, EXPP, LIT, LOGP (exponential)

◦ RCP, RSQ (reciprocal, r-square-root)

◦ SIN, COS (trig)

26



Example Shader 3.0 (DX9) capatbilities–
Fragment Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)

27



NVIDIA GPUs

28



NVIDIA Generations

• Kepler

• Maxwell

• Pascal

• Turing (consumer)/Volta (pro)

• Ampere

• Lovelace/Hopper

• Blackwell

29



NVIDIA Workstation vs Gaming

• Quadro (Workstation) vs Geforce (Gaming) (note from

2023, they renamed these)

◦ Quadro generally more RAM. higher Bus width

◦ Fancier Drivers

◦ Optimized for CAD type stuff and compute, rather

than games

◦ Higher reliability

◦ Quadro better support for double-precision floats

◦ More compute cores

30



◦ Power limits

31



GPU hardware in my Lab

• Can use these for projects. I mostly get these for power

measurement tests.

• NVIDIA RTX A2000 in Skylake

◦ 6GB GDDR6, 192-bit, 288 GB/s

◦ Ampere, PCIe4x16

◦ 3328 CUDA cores, 104 tensor cores, 26 RT cores

◦ 8 TFLOPS single-precision, RT 15.6 TFLOPS, Tensor

64 TFLOPS

◦ 70W, DirectX 12.07, Vulkan 1.2

32



• NVIDIA RTX A2000 GA106 in RaptorLake

• Roughly same as above but with 12GB RAM

• NVIDIA Quadro P2000 in Skylake (old)

◦ 5GB GDDR5, 160-bit, 140 GB/s

◦ 1024 cores, Pascal, PCIe3x16

◦ 75W, DirectX 12.0, Vulkan 1.0

• NVIDIA Quadro P400 in Haswell-EP

◦ 2GB GDDR5, 64-bit, up to 32 GB/s

◦ 256 cores, Pascal architecture

◦ 30W, OpenGL 4.5, DirectX 12.0

◦ Low-power for server, as runs in 1U rack

33



• NVIDIA Quadro K2200 in Quadro

◦ So old the drivers don’t want to support it anymore

◦ 4GB GDDR5, 128-bit 80 GB/s

◦ 640 cores, Maxwell architecture

◦ 68W, OpenGL 4.5, DirectX 11.2

34



CUDA Programming background

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

35

https://docs.nvidia.com/cuda/cuda-c-programming-guide/


CUDA – installing

• On Linux need to install the proprietary NVIDIA drivers

• Have to specify nonfree on Debian.

• Debates over the years whether NVIDIA can have

proprietary drivers; no one sued yet. (Depends on

whether they are a ”derived work” or not. Linus refuses

to weigh in)

• Sometimes have issues where drivers won’t install

(currently having that issue on some of my machines)

36



GPGPU Summary

• CPUs designed for fastest single-thread performance

Lots of transistors for caching (to hide memory latency),

control flow (branch predictors), caches

• GPUs designed to run as many threads as possible as

once

Use other methods to hide memory latency (mostly by

moving to other threads if one batch is waiting)

37



Programming a GPGPU (CUDA/OpenCL)

• Create a “kernel” which is a small GPU program that

runs on a single thread. This will be run on many cores

at a time.

• Allocate memory on the GPU and copy input data to it

• Launch the kernel to run many times in parallel. The

threads operate in lockstep, all executing the same

instruction in each thread.

• How is conditional execution handled? a lot like on

ARM. If/then/else. If the particular thread does not

38



meet the condition, it just does nothing until the other

condition finishes executing.

• If more threads are needed the available on the GPU,

may need to break the problem up into smaller batches

of threads.

• Once computing is done, copy results back to the CPU.

39



CPU vs GPU Programming Difference

• The biggest difference: NO LOOPS

• You essentially collapse your loop, and run all the loop

iterations simultaneously.

40



Flow Control, Branches

• Only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution

41


