
ECE 574 – Cluster Computing
Lecture 18

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11am, Barrows 133

26 March 2024

https://web.eece.maine.edu/~vweaver

Announcements

• HW#7 due

• Still working on HW#6 grading

• Project topics were due, should have responded to them

• ECE571 next semester

• Thanks for those attending the Friday talk

• Faculty interview on Monday moved to Wednesday, so

have to cancel Wednesday office hours

1

HW#6 Notes

• Hard to track down all the issues: Common ones:

◦ trying to be fancy

◦ C loop bounds: if want to operate on 0 to 79 inclusive,

want your loop to go from for(i=0;i<80;i++);

◦ Off by one errors

◦ Subtracting off ystart but forgetting you modified

ystart to be 1 in first rank

◦ Gathering in the wrong direction

◦ Doing border adjustments twice

2

HW#7 Notes

• Really testing your debugging skills. Advice:

◦ Write in small chunks, testing along way. Easier than

throwing together big mass of code and then giving up

when it doesn’t work

◦ Test with 1 rank and be sure that works before moving

onto more ranks

◦ Dump intermediate output, be sure sobelx works before

worrying about sobely or combine/

◦ Print your ranges and make sure they make sense

3

◦ “The output looks the same”, but it isn’t. Try flipping

between them. There might be binary diff tools to

actually show you what’s different, though that’s more

difficult if it’s an off-by-one error.

◦ Try to understand why you are off by one before just

adding +1 or -1 to your code

◦ If it crashes, usually it means you’re going off the edge

of a buffer, double and triple check the values that are

going into array accesses (or even worse, pointers)

◦ Some code is tricky, like finding edge conditions on

inputs. This is an important thing that happens often

4

in programming. Coding isn’t always cut+paste of ask

an AI, someone has to write the original tricky code.

5

CUDA Programming

• Since 2006

• Compute Unified Device Architecture

• See the NVIDIA “CUDA C Programming Guide”

• Use nvcc to compile

• .cu files. Note, technically C++ so watch for things like

new

6

CUDA Programming background

• https://docs.nvidia.com/cuda/cuda-c-programming-guide/

• https://docs.nvidia.com/cuda/cuda-c-programming-guide/

7

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

NVIDIA Terminology (CUDA)

• Thread: chunk of code running on GPU.

• Warp: group of thread running at same time in parallel

simultaneously

AMD calls this a “wavefront”

• Block: group of threads that need to run

• Grid: a group of thread blocks that need to finish before

next can be started

8

Terminology (cores)

• Confusing. Nvidia would say GTX285 had 240 stream

processors; what they mean is 30 cores, 8 SIMD units

per core.

9

Notes from CUDA document

• Designed to be simple

• Three abstractions

◦ hierarchy of thread groups

◦ shared memories,

◦ barrier synchronization

• Threads can be run in any order on any number of cores,

the programmer doesn’t have to worry about how many

cores there are

10

CUDA Programming

• Heterogeneous programming – there is a host executing

a main body of code (a CPU) and it dispatches code to

run on a device (a GPU)

• CUDA assumes host and device each have own separate

DRAM memory

(newer cards can share address space via VM tricks)

• CUDA C extends C, define C functions “kernels” that

are executed N times in parallel by N CUDA threads

11

CUDA Programming – Host vs Device

• *host* vs *device*

host code runs on CPU

device code runs on GPU

• Host code compiled by host compiler (gcc), device code

by custom NVidia compiler

12

CUDA Compiling

• nvcc – wrapper around gcc. global code compiled into

PTX (parallel thread execution) ISA

• can code in PTX code directly which is sort of like

assembly language. Won’t give out actual assembly

language. Why?

• PTX code is JIT compiled into native by the device

driver

• You can control JIT with environment variables

• Various command line options, some do things like

13

specify the “compute version” (GPU generation) to

target

• version compliance – can check version number. New

versions support more hardware but sometimes drop old

14

CUDA Coding

• Device kernel, in global section

• Only subset of C/C++ supported in the device code

• CUDA C has mix of host and device code. Compiles the

global stuff to PTX, compiles the <<< ... >>> into

code that can launch the GPU code

15

CUDA Programming – Memory Allocation

• cudaMalloc() allocates memory on the device

cudaMalloc((void **)&dev a,N*sizeof(int));

• cudaFree() to free when done

• cudaMemcpy(dev a,a,N*sizeof(int),

cudaMemcpyHostToDevice);

• cudaMemcpy(c,dev c,N*sizeof(int),

cudaMemcpyDeviceToHost);

16

CUDA Programming – Pointers

• Note: result of a cudaMalloc() might look like a

pointer, but it’s not

• You can’t dereference memory allocated with

cudaMalloc() on the CPU, the memory area is completely

separate

• There is work on newer GPUs allowing unified CPU/GPU

memory but we’re going to assume that’s not available

17

CUDA Programming – 2D/3D Arrays

• Can use cudaMallocPitch() and cudaMalloc3D()

• These will do proper padding/alignment when using

2d/3d arrays

• Have own cudaMemcpy2D() and cudaMemcpy3D()

18

CUDA Hardware – this might be dated

• GPU is array of Streaming Multiprocessors (SMs)

• Program partitioned into blocks of threads. Blocks

execute independently from each other.

• Manages/Schedules/Executes threads in groups of

32(??) parallel threads (warps) (weaving terminology)

(no relation)

• Threads have own PC, registers, etc, and can execute

independently

• When SM given thread block, partitions to warps and

19

each warp gets scheduled

• One common instruction at a time. If diverge in control

flow, each way executed and thread not taking that path

just waits.

• Full context stored with each warp; if warp is not ready

(waiting for memory) then it may be stopped and another

warp that’s ready can be run

20

CUDA Threads

• kernel defined using global declaration. When

called use <<<...>>> to specify number of threads

• each thread that is called is assigned a unique ThreadID

Use threadIdx to find what thread you are and act

accordingly

21

CUDA Programming – Overview

• Special kernel global function that runs on GPU

limited what you can run there

• Special call with angle brackets to run in parallel

VecAdd<<<1,N>>>(A,B,C)

• The kernel is run simultaneously on N different threads

• To get data on GPU need to cudaMalloc() it and then

cudaMemcpy() there

• When done, need to cudaMemcpy() back

22

Simple CUDA Kernel Example
__global__ void VecAdd(float *A, float *B, float *C) {

int i = threadIdx.x;

if (i<N) // don’t execute out of bounds

C[i]=A[i]+B[i];

}

int main(int argc , char **argv) {

....

/* Invoke N threads */

VecAdd <<<1,N>>>(A,B,C);

}

23

CUDA Programming – Thread Hierarchy

• threadIdx – 3 component vector, can identify what index

our thread is executing

• one dimensional (x) – thread id is (x)

• two dimensional (x,y) – thread id is (x +y*xsize)

• three dimensional (x,y,z) – thread id is (x +y*xsize +

z*xsize*ysize)

24

CUDA Programming – 2x2 Example
__global__ void MatAdd(float A[N][N], float B[N][N],

float C[N][N])

{

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

int main()

{

...

// Kernel invocation with one block of N * N * 1 threads

int numBlocks = 1;

dim3 threadsPerBlock(N, N);

MatAdd <<<numBlocks , threadsPerBlock >>>(A, B, C);

...

}

25

CUDA Example – multidimensional

• threadIdx is 3-component vector, can be seen as 1, 2 or

3 dimensional block of threads (thread block)

• Much like our sobel code, can look as 1D (just x), 2D,

(thread iD is ((y*xsize)+x) or (z*xsize*ysize)+y*xsize+x

• Weird syntax for doing 2 or 3d.

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{

int i=threadIdx.x;

int j=threadIdx.y;

C[i][j]=A[i][j]+B[i][j];

}

int numBlocks =1;

26

dim3 threadsPerBlock(N,N);

MatAdd <<<numBlocks , threadsPerBlock >>>(A,B,C);

• Each block made up of the threads. Can have multiple

levels of blocks too, can get block number with blockIdx

• Thread blocks operate independently, in any order. That

way can be scheduled across arbitrary number of cores

(depends how fancy your GPU is)

27

CUDA Programming – Threads

• global parameters to function – means pass to

CUDA compiler

• call global function like this add<<<1,1>>>(args)

where first inside brackets is number of blocks, second

is threads per block

• Can get block number with blockIdx.x and thread index

with threadIdx.x

• Could have 65536 blocks and 1024 threads, possibly 2

billion blocks on recent hardware.

28

• Why thread limit? Limited by number of threads per

core that share the same memory resources.

• Why threads vs blocks?

Shared memory, block specific

shared to specify

29

CUDA Programming – What if too big

• For example, sobel of 320x320x3 size is bigger than 1024

elements

• Need to break up into smaller chunks. This is tricky.
• // Kernel invocation

dim3 threadsPerBlock (16, 16);

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

MatAdd <<<numBlocks , threadsPerBlock >>>(A, B, C);

• Blocks must be able to operate independently.

30

CUDA Programming – Barriers

• syncthreads() is a barrier to make sure all threads

finish before continuing

31

CUDA Programming – Thread Block
Clusters

• On newer GPUs can also have clusters of compute cores

that are close together, and you can set up clusters of

thread blocks to run on them.

32

CUDA Memory

• Per-thread private local memory

• Shared memory (shared) visible to whole block

(lifetime of block)

Is like a scratchpad, also faster

• Global memory

• also constant and texture spaces. Have special rules.

Texture can do some filtering and stuff

• Global, constant, and texture persistent across kernel

launches by same app.

33

CUDA L2 Cache

• Can configure in complex way

• “set aside” parts of the cache

34

More Coding – Initialization

• Traditionally no explicit initialization, done automatically

first time you do something (keep in mind if timing

things)

• With CUDA 12.0 can call cudaInitDevice() or

cudaSetDevice() to force initialization

35

More Coding – Global Memory

• Global Memory: linear or arrays.

◦ Arrays are textures

◦ Linear arrays are allocated with cudaMalloc(),

cudaFree()

◦ To transfer use cudaMemcpy()

◦ Also can be allocated cudaMallocPitch() cudaMalloc3D()

for alignment reasons

can have better performance

◦ Access by symbol (?)

36

CUDA Shared memory

• shared . Faster than Global also device

Manually break your problem into smaller sizes

• Example where they do a matrix multiply and copy from

global to shared memory for faster work

37

Other Memory Interfaces

• Can lock host memory with cudaHostAlloc()

• Pinned, can’t be paged out. Can load store while kernel

running if case.

• Only so much available.

• Can be marked writecombining. Not cached.

• Slow for host to read (should only write) but speeds up

PCI transaction.

38

Heterogeneous Execution

• Usually assumed that serial code running on CPU while

launching the parallel code on GPU

39

Async Concurrent Execution

• Instead of serial/parallel/serial/parallel model

• Want to have CUDA running and host at same time, or

with mem transfers at same time

◦ Concurrent host/device: calls are async and return to

host before device done

◦ Concurrent kernel execution: newer devices can run

multiple kernels at once. Problem if use lots of memory

◦ Overlap of Data Transfer and Kernel execution

◦ Streams: sequence of commands that execute in order,

40

but can be interleaved with other streams

complicated way to set them up. Synchronization and

callbacks

41

Events

• Can create performance events to monitor timing

• PAPI can read out performance counters on some boards

• Often it’s for a full synchronous stream, can’t get values

mid-operation

• NVML can measure power and temp on some boards?

42

Multi-device system

• Can switch between active device

• More advanced systems can access each others device

memory

43

Other features

• Unified virtual address space (64 bit machines)

• Interprocess communication

• Can share device memory handles between processes

with IPC

44

Error Checking

• Complex, as things running asynchronously on GPU

• Various functions to query the error state

• cudaPeekAtLastError() – reports error

• cudaGetLastError() – resets to cudaSuccess

// check for error

cudaError_t error = cudaGetLastError ();

if (error != cudaSuccess) {

printf("CUDA error: %s\n", cudaGetErrorString(error));

exit (-1);

}

45

Texture Memory

• Complex

46

3D Interop

• Can make results go to an OpenGL or Direct3D buffer

• Can then use CUDA results in your graphics program

47

Code Example – see vector add.cu

#include <stdio.h>

#define N 10

__global__ void add (int *a, int *b, int *c) {

int tid=blockIdx.x;

if (tid <N) {

c[tid]=a[tid]+b[tid];

}

}

int main(int arc , char **argv) {

int a[N],b[N],c[N];

int *dev_a ,*dev_b ,* dev_c;

int i;

/* Allocate memory on GPU */

48

cudaMalloc ((void **)& dev_a ,N*sizeof(int));

cudaMalloc ((void **)& dev_b ,N*sizeof(int));

cudaMalloc ((void **)& dev_c ,N*sizeof(int));

/* Fill the host arrays with values */

for(i=0;i<N;i++) {

a[i]=-i;

b[i]=i*i;

}

cudaMemcpy(dev_a ,a,N*sizeof(int),cudaMemcpyHostToDevice);

cudaMemcpy(dev_b ,b,N*sizeof(int),cudaMemcpyHostToDevice);

add <<<N,1>>>(dev_a ,dev_b ,dev_c);

cudaMemcpy(c,dev_c ,N*sizeof(int),cudaMemcpyDeviceToHost);

/* results */

for(i=0;i<N;i++) {

printf("%d+%d=%d\n",a[i],b[i],c[i]);

}

cudaFree(dev_a);

cudaFree(dev_b);

49

cudaFree(dev_c);

return 0;

}

50

Code Examples – saxpy

• Does a single-precision A*X+Y

y[i]=a*x[i]+y[i]

• saxpy c.c shows the algorithm in C, does 8 million

iterations

• saxpy.cu does same thing on GPU. Fails for 8 million

threads though. Why? Thread can’t be higher than

1024

• saxpy block.cu breaks things up into blocks and thus

can run. gives same results

51

• Try timing things with time, notice GPU code is actually

slower. This is due to the memory copying overhead, if

you use the loop option to make it repeat eventually hit

a crossover point.

52

CUDA Tools

• nvidia-smi. Various options. Usage, power usage, etc.

• nvprof ./hello world profiling

• nvvp visual profiler, can’t run over text console

• nvidia-smi --query-gpu=utilization.gpu,power.draw

--format=csv -lms 100

53

CUDA Debugging

• Can download special cuda-gdb from NVIDIA

• Plain printf debugging doesn’t really work

54

Performance

• Really optimized for 32-bit (single-precision) float

• We will do 32-bit integer, which it also can do

• Intrinsics for faster divide

• Use single-precision sinf(), sqrtf() and such

• Control flow can really hurt performance, lead to

serialization

55

C++

• Can do most of C++ to varying degree

• If you want to do advanced C++ stuff check out the

CUDA C document for details

56

Homework Tips

• First implement combine, as it’s simpler

◦ You will need to cudaMalloc() room for sobelx, sobely,

and result on the device

◦ You will need to cudaMemcpy the sobelx and sobely

data there

◦ Assuming your combine code is already acting as

a linear array, converting it to a kernel should be

straightforward

◦ You will need to split it up into blocks though as the

57

image size is too big to fit in one block of threads

◦ Remember to copy the results back at the end

• Next implement convolution

◦ You probably want to collapse all the loops down to

one

◦ The hardest issue is skipping the edges. Instead of

skipping y==0 and y==ysize-1 you’ll need to skip first

xsize*depth and last xsize*depth chunks, as well as the

left/right sides which are something like i%(xsize*depth)<3 and

i%(xsize*depth>(xsize*depth-4)

• Debugging if things go wrong can be tricky

58

