
ECE 574 – Cluster Computing
Lecture 20

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11am, Barrows 133

2 April 2024

https://web.eece.maine.edu/~vweaver

Announcements

• Don’t forget HW#8

• Note that project status report due next Friday (12th)

Has extra bibliography step

• Second midterm, Tuesday the 16th (no final during finals

week)

• No office hours Monday the 8th (eclipse)

1

HW#8 CUDA Notes

• Conditional execution (like if statements) is fine in a

kernel, they just don’t perform well

• For our homework you probably should not be using for

loops.

For our code, it is like the entire loop was unrolled and

we are only operating on one index (which we calculate

based on threadIdx). The GPU executes huge chunks

of what would have been the loop simultaneously in

parallel.

2

• Remember that CUDA is a little like MPI, in that the

GPU is a separate machine without a shared memory

space

• You have to make sure you are passing by reference, you

can’t pass a CPU pointer as an argument and expect it

to work

• It is hard to debug. If getting weird results, try backing

things out step at a time until it does what you expect

and then adding things back on

3

Non-CUDA Acceleration Libraries

4

OpenACC

• Sort of like OpenMP but can offload to GPU as well as

CPUs

• Cray, CAPS, Nvidia and PGI

• Designed for use in heterogeneous CPU/GPU systems

• Like OpenMP, annotate existing code

5

OpenACC – Using it

• Need a compiler that supports it

• GCC only got support for OpenACC 2.5 in version 9.1

• If you want to run on gpu you need nvc (NOTE: not

the same as nvcc) which is nvidia’s version of the PGI

compiler

• Note, you don’t need to allocate memory on device and

copy back/forth, it does it for you

• include openacc.h

6

OpnACC – Pragmas, like with OpenMP

• to define/copy data: #pragma acc data

• to tell the compiler to parallelize a region. It might be

conservative, so you might have to give it extra info to

get better performance #pragma acc kernels

• to parallelize a loop (note, you need to make sure it is

safe to do this): #pragma acc parallel loop

7

OpnACC – Other

• Various runtime functions as well, e.g. acc_get_num_devices()

• Compile code with -fopenacc

• It’s hard to tell even when code compiles/runs if it’s

actually being accelerated

8

Other Low-Level Accelerator Libraries

• For graphics, OpenGL and DirectX/3D too abstract, not

match all hardware

• Issues like efficient use of DMA, command buffers, etc.

• Try to get CPU and GPU working better together

• Defunct OpenGL-style Graphics Libraries:

◦ Glide (3dfx)

◦ Mantle (AMD)

• Other low-level GPU libraries: GNM (playstation 4),

NVN (Nvidia/Switch)

9

Apple Metal

• Metal – from Apple, their replacement for OpenCL.

C++ like, sort of a mix of OpenCL and OpenGL

10

Others

• WebGPU – GL/GPGPU Javascript (currently under

development)

• WebCL – OpenCL Javascript bindings

• OpenVG – 2d vector graphics accel

• Lots more on Wikipedia (?)

11

Vulkan

• More modern OpenGL

• Supposedly OpenCL merging into Vulcan?

• based on AMD Mantle

• Is a bit beyond this class

12

Vulkan Coding

• Can be Graphics, Compute, or both

13

Vulkan – Creating Queue

• Creating device and queue

• Create VkInstance

• VkApplicationInfo

• VkInstanceCreateInfo

• VkEnumeratePhysicalDevices

• vkGetPhysicalDeviceQueueFamilyProperties – can find if

device supports compute

• vkGetDeviceQueue()

14

Vulkan – Allocating Memories and Buffers

• VkMemoryAllocateInfo()

• vkBindBufferMemory

• vkMapMemory()

• vkUnmapMemory()

15

Vulkan – SPIR-V shader

• Compute shaders?

• Write shaders?

16

OpenCL Motivation

• Why not just do everything in CUDA?

• What if you have an AMD machine (Frontier)?

• Can you write CUDA compatibility wrappers? NVIDIA

doesn’t like that.

17

OpenCL – Open Computing Language

• The main competitor to CUDA?

• CUDA is only for NVIDIA GPUs

• What if you have Intel or AMD (ATI) chip? Or ARM

MALI? or Raspberry Pi Vcore IV?

• OpenCL is sort of like CUDA, but cross-platform

• Not only for GPUs, but can target regular CPU, DSP,

FPGAs, etc

• Vendor provides a driver

• Khronos (the OpenGL + Vulkan people?) also run

18

OpenCL

• Windows, OSX, Linux

19

OpenCL History

• Started by Apple, 2008

• Donated to Khronos

• Apple has abandoned it

• AMD chose it instead of Metal

• OpenCL 1.0 (2009)

• OpenCL 1.1 (2010)

• OpenCL 1.2 (2011)

• OpenCL 2.0 (2013)

◦ Shared virtual memory

20

• OpenCL 2.1 (2015)

◦ Can use C++ in kernels

• OpenCL 2.2 (2017)

◦ Support for SPIR-V intermediate language

• OpenCL 3.0 (2020)

◦ OpenCL 1.2 is baseline

◦ All 2.x and 3.x features optional?

◦ Changed up the C++ and code generation, based on

LLVM

• Grumblings of somehow merging functionality with

Vulkan?

21

Installing OpenCL (Linux)

• You install opencl

• You also need to install an ICD (installable client driver)

for the device you want to run on

• You can have multiple ICDs installed

• NVIDIA is actually easiest, especially if you already have

CUDA going

• AMD as of 2022 the open-source drivers don’t support

OpenCL

You can install OpenCL from the proprietary drivers but

22

that might not work well

• Intel GPU has project could Beignet

• There are also CPU/software, emulated, and other ICDs

23

OpenCL program Flow

Similar to CUDA but *much* more verbose

• Allocate host buffer

• Get platform/device

• Set up platform

• Choose device

• Create context

• Create command queue

• Create memory buffer on device

• Copy buffer to device

24

• Create a program kernel

• Build kernel

• Set arguments

• Execute

• Read back results

• clean up and wait to finish

• Release

25

Getting things Going

• Much more of a pain than CUDA, lots of manual and

boilerplate code

• I’ll provide it for you

26

First – Platforms
cl_int clGetPlatformIDs(cl_uint num_entries ,

cl_platform_id *platforms ,

cl_uint *num_platforms);

• Query number of platforms

• You can call with num entries 0, platforms NULL to get

number of platforms

• Then malloc() space to get all the info

• You can also hard-code a number to read, but that’s not

as flexible

27

Iterating platform info
for(i=0;i<num_platforms;i++) {

err = clGetPlatformInfo(platform[i], CL_PLATFORM_NAME ,

sizeof(platform_name[i]), platform_name[i],

&returned_size);

if (err != CL_SUCCESS) {

printf("Error: Failed to get platform info! %s\n",

cl_getErrorString(err));

return EXIT_FAILURE;

}

• Can iterate and get NAME, VENDOR, VERSION

• Need to allocate space for strings

28

Error printing aside

• OpenCL doesn’t have equivalent of strerror()

• You just get a number on error

• You can implement your own (I provide one)

29

Initializing Devices
cl_int clGetDeviceIDs(

cl_platform_id platform ,

cl_device_type device_type ,

cl_uint num_entries ,

cl_device_id* devices ,

cl_uint* num_devices);

• Now when you have the platform, you can get the devices

for that platform

• Why multiple? Can you have multiple GPUs on same

platform?

Can you have a CPU that also has integrated GPU?

• Device type: CL DEVICE TYPE ALL,

30

CL DEVICE TYPE GPU, CL DEVICE TYPE CPU,

etc

31

Iterating Devices
cl_int clGetDeviceInfo(

cl_device_info param_name ,

size_t param_value_size ,

void *param_value ,

size_t *param_value_size_ret)

• You can also iterate devices to get info too

32

Initializing the Context
cl_context clCreateContext(const cl_context_properties *properties ,

cl_uint num_devices ,

const cl_device_id *devices ,

void (CL_CALLBACK *pfn_notify) const char *errinfo ,

const void *private_info , size_t cb,

void *user_data ,

cl_int *errcode_ret)

• A context manages the host/device interaction

• We need one for each OpenCL kernel we call

• Callback function can be used to return errors from the

kernel, can set to 0/NULL if don’t care

33

Creating the Command Queue
cl_command_queue clCreateCommandQueueWithProperties(

cl_context context ,

cl_device_id device ,

const cl_queue_properties *properties ,

cl_int *errcode_ret);

• Creates command queue

34

Note on Kernel

• Based on C

• pointers annotated with memory level

• some things not allowed: recursion, function pointers

• regular data types, some others like vectors

• With OpenCL 2.x more similar to C++

• Plan is to merge it with Vulkan

35

Loading Kernel – From Source

• Just-in-time compilation

• How can you do that? Just include the kernel as plain

text and it gets compiled right when you run the program

• Upside: your executable can be moved to other machines

with different backends and it will just work

• Downsides: needs to compile the code every time you

run it

36

Loading Kernel – Binary

• Can get binary-only kernels (why?)

◦ Proprietary?

◦ also, not have to build each time

• clCreateProgramWithBinary()

37

Including the Kernel

• Just have it in a string in your file

• Have it on disk but do some #include magic

• Have it in a file on disk and load it into a string

• Intermediate representation?

38

Notes on kernel (OpenCL C) Datatypes

• Own built in data types: basic app vector app vector

char cl char charn cl charn etc

why? portable. sadly sizes not same on windows/linux

• n element vector, 2,3,4,8,16 sizes

• “half” type for 16-bit fp

• Special image types, image2d t (TODO: look up more

on this)

39

Notes on kernel (OpenCL C) Address Space
Qualifiers

• global

• local

• constant

• private

40

Example
const char *saxpy_kernel = "\n"

"__kernel\n"

"void saxpy (\n"

" const unsigned int n,\n"

" const float a,\n"

" __global float *x,\n"

" __global float *y) {\n"

"\n"

" int i = get_global_id (0);\n"

"\n"

" if (i < n) {\n"

" y[i] = a * x[i] + y[i];\n"

" }\n"

"}\n";

• get global id(0) is same as threadIdx.x from CUDA (0

is x, 1 is y, 2 is z)

41

Loading the kernel from source code
cl_program clCreateProgramWithSource(cl_context context ,

cl_uint count ,

const char **strings ,

const size_t *lengths ,

cl_int *errcode_ret)

42

Building the Kernel
cl_int clBuildProgram(cl_program program ,

cl_uint num_devices ,

const cl_device_id *device_list ,

const char *options ,

void (CL_CALLBACK *pfn_notify)

(cl_program program , void *user_data),

void *user_data)

• Essentially just launch a compiler on the kernel source

code

• Can get build info (the build log)

• Can pass command line arguments

• Can release kernel when done (TODO)

43

Create the Kernel
cl_kernel clCreateKernel (cl_program program ,

const char *kernel_name ,

cl_int *errcode_ret)

• Note the function name is the same as specified in kernel

44

Memory Hierarchy

• global – shared by all, but high latency

• constant – read only by all but cpu, smaller, a bit faster

• local – shared by a group of cores on device

• register – per element

45

Allocating Memory
cl_mem clCreateBuffer (cl_context context ,

cl_mem_flags flags ,

size_t size ,

void *host_ptr ,

cl_int *errcode_ret)

• Parameters like CL_MEM_READ_WRITE, CL_MEM_READ_ONLY, etc.

46

Copying Memory Host to Device
cl_int clEnqueueWriteBuffer(cl_command_queue command_queue ,

cl_mem buffer ,

cl_bool blocking_write ,

size_t offset ,

size_t size ,

const void *ptr ,

cl_uint num_events_in_wait_list ,

const cl_event *event_wait_list ,

cl_event *event)

/* Example */

err = clEnqueueWriteBuffer(commands , dev_x , CL_TRUE , 0,

sizeof(float) * N, x, 0, NULL , NULL);

•
• OpenCL 2.0 allows sharing virtual address space so you

might not have to copy?

47

Setting up arguments
cl_int clSetKernelArg(

cl_kernel kernel ,

cl_uint arg_index ,

size_t arg_size ,

const void* arg_value);

err |= clSetKernelArg(kernel_saxpy ,

0, sizeof(unsigned int), &N);

• Set arguments to pass to kernel

48

Getting size of workgroup kernel
cl_int clGetKernelWorkGroupInfo(cl_kernel kernel ,

cl_device_id device ,

cl_kernel_work_group_info param_name ,

size_t param_value_size ,

void *param_value ,

size_t *param_value_size_ret)

• Determine how wide we can be, sort of like the max

thread count in CUDA

• Can set up three-dimensional thread type things like

CUDA but easier not to if we fit

49

Iterations in the kernel

• A lot like CUDA, where split into 1D, 2D, or 3D grid.

• get global id();

• get local id();

• get num groups();

• get group size()

• get group id()

50

Launching the kernel
cl_int clEnqueueNDRangeKernel (

cl_command_queue command_queue ,

cl_kernel kernel ,

cl_uint work_dim ,

const size_t *global_work_offset ,

const size_t *global_work_size ,

const size_t *local_work_size ,

cl_uint num_events_in_wait_list ,

const cl_event *event_wait_list ,

cl_event *event)

• Launch the kernel

51

Command Queue

• FIFO or out of order (always issued in order)

52

Querying Kernel

53

Synchronization

• when needed?

• single device, out of order queue

• multiple devices?

• coarse grained

◦ clFlush/clFinish

• fine grained

◦ event based

• memory fences?

• CL event, for communicating

54

Freeing stuff at end

• Good idea

55

OpenCL – compiling

gcc -I include -L /lib -lOpenCL

saxpyc -o saxxpy

56

Demo, sample code

• Try out clinfo program

• Run saxpy with 0, 1, and 2 devices

• Note slowdown as it JITs

57

SPIR – standard portable Intermediate
Representation

58

OpenCL HW#9 Notes

• Have to compile your kernel code

• Instead, can distribute binary only code. Why?

• Advanced: can set up queue and queued kernels only

run when dependent ones are finished

• Calculating thread grids – did it for you?

• Trying to use integrated video on Haswell-ep? No intel

integrated video on Xeon! It has a Matrox g200 chip

from 1998!

• AMD proprietary driver. Can install alongside free driver

59

on Linux but maybe issues getting it working

• Using optimized intel CPU driver, interesting to see the

result. Using 8-bit char data on a GPU is not optimal,

has to convert from int to float before doing calcs

• Questions about what things are faster, the CUDA

manual chapter 5 has an optimization guide which is

interesting to read.

60

