ECE 574 — Cluster Computing
Lecture 20

Vince Weaver
https://web.eece.maine.edu/~vweaver
vincent.weaverOmaine.edu

11am, Barrows 133

2 April 2024

https://web.eece.maine.edu/~vweaver

Announcements

e Don't forget HW#8

e Note that project status report due next Friday (12th)
Has extra bibliography step

e Second midterm, Tuesday the 16th (no final during finals
week)

e No office hours Monday the 8th (eclipse)

HW#8 CUDA Notes

e Conditional execution (like if statements) is fine in a

kernel, they just don't perform well

e For our homework you probably should not be using for
00ps.

-or our code, 1t is like the entire loop was unrolled and

we are only operating on one index (which we calculate
based on threadldx). The GPU executes huge chunks

of w
paral

nat would have been the loop simultaneously in

el.

e Remember that CUDA is a little like MPI, in that the
GPU is a separate machine without a shared memory
space

e You have to make sure you are passing by reference, you
can't pass a CPU pointer as an argument and expect it
to work

e It is hard to debug. If getting weird results, try backing
things out step at a time until it does what you expect
and then adding things back on

Non-CUDA Acceleration Libraries

OpenACC

e Sort of like OpenMP but can offload to GPU as well as
CPUs

e Cray, CAPS, Nvidia and PGl

e Designed for use in heterogeneous CPU/GPU systems

e Like OpenMP, annotate existing code

OpenACC - Using it

e Need a compiler that supports it

e GCC only got support for OpenACC 2.5 in version 9.1

e If you want to run on gpu you need nvc (NOTE: not
the same as nvcc) which is nvidia's version of the PGl
compiler

e Note, you don't need to allocate memory on device and
copy back/forth, it does it for you

e include openacc.h

OpnACC - Pragmas, like with OpenMP

e to define/copy data: #pregma acc data

e to tell the compiler to parallelize a region. It might be
conservative, so you might have to give it extra info to
get better performance ipragna acc xernes

e to parallelize a loop (note, you need to make sure it is
safe to do this): spregma ace paratier 100p

OpnACC - Other

e Various runtime functions as well, €.g. acc_get_nun_devices©

e Compile code with -fopenace

e It's hard to tell even when code compiles/runs if it's
actually being accelerated

Other Low-Level Accelerator Libraries

e For graphics, OpenGL and DirectX/3D too abstract, not
match all hardware
e Issues like efficient use of DMA, command buffers, etc.
e Try to get CPU and GPU working better together
e Defunct OpenGL-style Graphics Libraries:
o Glide (3dfx)
o Mantle (AMD)
e Other low-level GPU libraries: GNM (playstation 4),
NVN (Nvidia/Switch)

-y 9

Apple Metal

e Metal — from Apple, their replacement for OpenCL.
C++ like, sort of a mix of OpenCL and OpenGL

10

Others

e WebGPU - GL/GPGPU Javascript (currently under
development)

e WebCL — OpenCL Javascript bindings

e OpenVG — 2d vector graphics accel

e Lots more on Wikipedia (?7)

/Y 11

Vulkan

e More modern OpenGL
e Supposedly OpenCL merging into Vulcan?
e based on AMD Mantle

e Is a bit beyond this class

12

Vulkan Coding

e Can be Graphics, Compute, or both

13

Vulkan — Creating Queue

e Creating device and queue
e Create Vklnstance

e VkApplicationlnfo

e VkinstanceCreatelnfo

e VkEnumeratePhysicalDevices

e vkGetPhysicalDeviceQueueFamilyProperties — can find if
device supports compute

e vkGetDeviceQueue()

-y 14

Vulkan — Allocating Memories and Buffers

e VkMemoryAllocatelnfo()

oV
oV
oV

kBindBufferMemory
kMapMemory()

kUnmapMemory()

15

Vulkan — SPIR-V shader

e Compute shaders?
e \Write shaders?

16

OpenCL Motivation

e \Why not just do everything in CUDA?

e What if you have an AMD machine (Frontier)?

e Can you write CUDA compatibility wrappers? NVIDIA
doesn't like that.

-y 17

OpenCL — Open Computing Language

e The main competitor to CUDA?

e CUDA is only for NVIDIA GPUs

e What if you have Intel or AMD (ATI) chip? Or ARM
MALI? or Raspberry Pi Vcore IV?

e OpenCL is sort of like CUDA, but cross-platform

e Not only for GPUs, but can target regular CPU, DSP,
FPGASs, etc

e Vendor provides a driver

e Khronos (the OpenGL + Vulkan people?) also run

-y 18

OpenCL
e \Windows, OSX, Linux

19

OpenCL History

e Started by Apple, 2008
e Donated to Khronos
e Apple has abandoned it
e AMD chose it instead of Metal
e OpenCL 1.0 (2009)
e OpenCL 1.1 (2010)
e OpenCL 1.2 (2011)
e OpenCL 2.0 (2013)
o Shared virtual memory

e OpenCL 2.1 (2015)
o Can use C++ in kernels
e OpenCL 2.2 (2017)
o Support for SPIR-V intermediate language
e OpenCL 3.0 (2020)
o OpenCL 1.2 is baseline
o All 2.x and 3.x features optional?
o Changed up the C+4 and code generation, based on
LLVM

e Grumblings of somehow merging functionality with
Vulkan?

/Y 21

Installing OpenCL (Linux)

e You install opencl

e You also need to install an ICD (installable client driver)
for the device you want to run on

e You can have multiple ICDs installed

e NVIDIA is actually easiest, especially if you already have
CUDA going

e AMD as of 2022 the open-source drivers don't support

OpenCL
You can install OpenCL from the proprietary drivers but

-y 2

that might not work well
e Intel GPU has project could Beignet
e There are also CPU /software, emulated, and other ICDs

-y 23

OpenCL program Flow

Similar to CUDA but *much* more verbose

e Allocate host buffer

e Get platform/device

e Set up platform

e Choose device

e Create context

e Create command queue

e Create memory buffer on device
e Copy buffer to device

24

e Create a program kernel

e Build kernel

e Set arguments

e Execute

e Read back results

e clean up and wait to finish
e Release

25

Getting things Going

e Much more of a pain than CUDA, lots of manual and
boilerplate code
e I'll provide it for you

-y 26

First — Platforms

cl_int clGetPlatformIDs(cl_uint num_entries,
cl_platform_id *platforms,
cl_uint *num_platforms);

e Query number of platforms

e You can call with num_entries 0, platforms NULL to get
number of platforms

e Then malloc() space to get all the info

e You can also hard-code a number to read, but that's not
as flexible

-y 21

Iterating platform info

for(i=0;i<num_platforms;i++) {

err = clGetPlatformInfo(platform[i]l, CL_PLATFORM_NAME,
sizeof (platform_name[i]), platform_namel[i],
&returned_size);

if (err != CL_SUCCESS) {
printf ("Error: Failed to get platform info! %s\n",

cl_getErrorString(err));
return EXIT_FAILURE;

e Can iterate and get NAME, VENDOR, VERSION
e Need to allocate space for strings

28

Error printing aside

e OpenCL doesn't have equivalent of strerror ()
e You just get a number on error
e You can implement your own (| provide one)

29

Initializing Devices

cl_int clGetDeviceIDs(
cl_platform_id platform,
cl_device_type device_type,
cl_uint num_entries,
cl_device_idx*x devices,
cl_uint* num_devices);

e Now when you have the platform, you can get the devices
for that platform

e Why multiple? Can you have multiple GPUs on same
platform?
Can you have a CPU that also has integrated GPU?

e Device type: CL_DEVICE_TYPE_ALL,

-y 30

CL_DEVICE_TYPE_GPU, CL_DEVICE_TYPE_CPU,
etc

-y 31

Iterating Devices

cl_int clGetDeviceInfo(
cl_device_info param_name,
size_t param_value_size,
void *param_value,
size_t *param_value_size_ret)

e You can also iterate devices to get info too

32

Initializing the Context

cl_context clCreateContext(const cl_context_properties *properties,
cl_uint num_devices,
const cl_device_id *devices,

void (CL_CALLBACK *pfn_notify) const char *errinfo,
const void *private_info, size_t cb,

void *user_data,

cl_int *errcode_ret)

e A context manages the host/device interaction
e WWe need one for each OpenCL kernel we call

e Callback function can be used to return errors from the
kernel, can set to O/NULL if don't care

/Y 33

Creating the Command Queue

cl_command_queue clCreateCommandQueueWithProperties (
cl_context context,
cl_device_id device,
const cl_queue_properties *properties,
cl_int *errcode_ret);

e Creates command queue

34

Note on Kernel

e Based on C

e pointers annotated with memory level

e some things not allowed: recursion, function pointers
e regular data types, some others like vectors

o With OpenCL 2.x more similar to C++

e Plan is to merge it with Vulkan

35

Loading Kernel — From Source

e Just-in-time compilation

e How can you do that? Just include the kernel as plain
text and it gets compiled right when you run the program

e Upside: your executable can be moved to other machines
with different backends and it will just work

e Downsides: needs to compile the code every time you
run It

/Y 36

Loading Kernel — Binary

e Can get binary-only kernels (why?)
o Proprietary?
o also, not have to build each time

® cliCreateProgramWithBinary ()

37

Including the Kernel

e Just have it in a string in your file

Have it on disk but do some #inciuee Mmagic
Have it in a file on disk and load it into a string

ntermediate representation?

38

Notes on kernel (OpenCL C) Datatypes

e Own built in data types: basic app vector app_vector
char cl_char charn cl_charn etc
why? portable. sadly sizes not same on windows/linux

e n element vector, 2,3,4,8,16 sizes

e “halft” type for 16-bit fp

e Special image types, image2d_t (TODO: look up more
on this)

/Y 39

Notes on kernel (OpenCL C) Address Space
Qualifiers

__global
__local
__constant
__private

Example

const char *saxpy_kernel = "\n"
"__kernel\n"
"void saxpy (\n"
" const unsigned int n,\n"
" const float a,\n"
" __global float =*x,\n"

" __global float =*y) {\n"

ll\nll

" int i = get_global_id (0);\n"
ll\nll

" if (i < n) {\n"

" y[il = a * x[i] + y[i]l;\n"
" F\n"

"F\n";

e get_global_id(0) is same as threadldx.x from CUDA (0
isx, Lisy, 2is z)

-y a1

Loading the kernel from source

cl_program clCreateProgramWithSource(cl_context context,
cl_uint count,
const char **xstrings,
const size_t x*lengths,
cl_int *errcode_ret)

code

42

Building the Kernel

cl_int clBuildProgram(cl_program program,
cl_uint num_devices,
const cl_device_id *device_list,
const char x*options,
void (CL_CALLBACK *pfn_notify)
(cl_program program, void *user_data),
void *user_data)

e Essentially just launch a compiler on the kernel source

code
e Can get build info (the build log)
e Can pass command line arguments

e Can release kernel when done (TODO)

-y 43

Create the Kernel

cl_kernel clCreateKernel (cl_program program,
const char *kernel_name,
cl_int *errcode_ret)

e Note the function name is the same as specified in kernel

-y ”

Memory Hierarchy

e global — shared by all, but high latency

e constant — read only by all but cpu, smaller, a bit faster
e local — shared by a group of cores on device

e register — per element

-y 45

Allocating Memory

cl_mem clCreateBuffer (cl_context context,
cl_mem_flags flags,
size_t size,
void *host_ptr,
cl_int *errcode_ret)

e Parameters like CL_MEM_READ_WRITE, cL_MEM_reap_onry, €{C.

46

Copying Memory Host to Device

cl_int clEnqueueWriteBuffer (cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_write,
size_t offset,
size_t size,
const void *ptr,
cl_uint num_events_in_wait_1list,
const cl_event *event_wait_list,
cl_event *event)

/* Example */

err = clEnqueueWriteBuffer (commands, dev_x, CL_TRUE, O,

sizeof (float) * N, x, 0, NULL, NULL);

e OpenCL 2.0 allows sharing virtual address space so you
might not have to copy?

/Y 47

Setting up arguments

cl_int clSetKernelArg(
cl_kernel kernel,
cl_uint arg_index,
size_t arg_size,
const void* arg_value);

err |= clSetKernelArg(kernel_saxpy,
0, sizeof (unsigned int), &N);

e Set arguments to pass to kernel

48

Getting size of workgroup kernel

cl_int clGetKernelWorkGroupInfo(cl_kernel kernel,
cl_device_id device,
cl_kernel_work_group_info param_name,
size_t param_value_size,
void *param_value,
size_t *param_value_size_ret)

e Determine how wide we can be, sort of like the max
thread count in CUDA

e Can set up three-dimensional thread type things like
CUDA but easier not to if we fit

-y 49

Iterations in the kernel

e A lot like CUDA, where split into 1D, 2D, or 3D grid.
e get_global_id();

e get_local_id();

e get_num_groups();

e get_group_size()

e get_group_id()

50

Launching the kernel

cl_int clEnqueueNDRangeKernel (
cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_1list,
const cl_event *event_wait_list,
cl_event x*event)

e Launch the kernel

51

Command Queue

e FIFO or out of order (always issued in order)

52

Querying Kernel

53

Synchronization

when needed?
single device, out of order queue
multiple devices?
coarse grained
o clFlush /clFinish
e fine grained
o event based
e memory fences?

e CL event, for communicating

-y 54

e Good idea

Freeing stuff at end

55

OpenCL — compiling

gcc -I include -L /1ib -10penCL
Saxpyc —O Saxxpy

56

Demo, sample code

e Iry out clinfo program
e Run saxpy with 0, 1, and 2 devices
e Note slowdown as it JITs

57

SPIR - standard portable Intermediate
Representation

58

OpenCL HW#9 Notes

e Have to compile your kernel code

e Instead, can distribute binary only code. Why?

e Advanced: can set up queue and queued kernels only
run when dependent ones are finished

e Calculating thread grids — did it for you?

e Trying to use integrated video on Haswell-ep? No intel
Integrated video on Xeon! It has a Matrox g200 chip
from 1998!

e AMD proprietary driver. Can install alongside free driver

-y 50

on Linux but maybe issues getting it working

e Using optimized intel CPU driver, interesting to see the
result. Using 8-bit char data on a GPU is not optimal,
has to convert from int to float before doing calcs

e Questions about what things are faster, the CUDA

manual chapter 5 has an optimization guide which is
Interesting to read.

/Y 60

