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Announcements

• Remember no final exam for this course

• Still catching up on grading homeworks and 2nd exam

• Don’t forget to do online student evaluations

• Remember Final Project Writeup (due 3rd May)
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HW #7 notes

• Fine grained parallelism

• Running on the Pi-cluster

◦ Test with np=7, some code failed that worked with 2

9d4b6548fa8c6ff66602ef5993aca90f common

seems to be not gathering in the extra lines

◦ Reading from each core rather than Bcast doesn’t help

anything.
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HW #7 – Pi Cluster Results

• space station input only scale to 4 cores?

• See raw data next slides

• On 4 cores, MPI smart enough to use local methods for

broadcast which are much faster. Note how much slower

once it has to go out over ethernet

• To get best usage of an MPI cluster you need to have

a lot of CPU usage to make up for the slow network

behavior
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HW #7 – Input Sizes

input dimension size

butterfinger 320x320 307kB
earth 2048x2048 13MB

spacestation 4288x2929 38MB
Jan5 10848x10848 353MB
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HW #7 – Pi Cluster/Spacestation

cores load bcast convolve combine gather tail store total
1 0.2 0 3.9 0.3 0.04 0 1.4 5.9
2 0.2 0.1 2.5 0.2 0.2 0 1.4 4.6
4 0.2 0.1 1.2 0.09 0.5 0 0.3 2.3
8 0.2 1.3 0.2 0.04 0.3 0 0.3 2.4
16 0.2 1.5 0.4 0.02 0.5 0 1.0 3.7
20 0.2 2.7 0.3 0.02 0.6 0 0.4 4.0

note: refuses to run with 32 threads
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HW #7 – Pi Cluster/Jan5

cores load bcast convolve combine gather tail store total
1 2.2 0 56 3.1 0.4 0 6.4 68
2 2.2 0.4 33 1.5 1.6 0 5.5 44
4 2.2 0.4 27 0.8 3.0 0 5.6 39
8 2.2 13 2.4 0.3 4.9 0 4.7 28
16 2.2 19 1.0 0.2 3.6 0 2.9 29
20 2.2 29 0.8 0.1 4.7 0 3.6 41
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HW #7 – Historical Pi2 spacestation results

cores load bcast convolve combine gather tail store total
1 1.0 0 12.8 3.8 0.1 0 3.4 21.2
2 1.0 0.1 6.4 1.9 1.8 0 2.4 13.7
4 1.0 0.3 3.2 0.9 3.0 0 2.4 10.9
8 1.0 5.6 1.7 0.5 4.6 0 2.4 15.8
16 1.0 7.3 0.7 0.2 6.5 0 2.4 18.2
32 1.0 8.0 0.3 0.1 6.4 0 2.4 18.3
64 1.0 8.8 0.1 0.06 6.9 0 2.4 19.5
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HW #8 notes

• Be careful memory copying, if copying an array of 9 ints

need to copy 36 bytes (not 9)

• Also, you can pass in ints as parameters (no need to

allocate space and then memcpy in. Or you could, but if

you do you would use points and allocate space properly)

• Be sure you are using *unsigned char* for the image

data, not signed char.

• Limits and matrix indexing
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HW #8 results with jan5 image

Type Load Copy Convolve Combine Store Total
OMPx16 1s 0.882 0.135 0.9 3.12
MPIx16 1s 0.5+1.4 0.6 0.1 1.0 4.9
Cuda 1s 0.3 0.2 0.2 1.0 3.3

OpenCL CUDA 1s 0.2 0.4 0.4 0.9 2.9
OpenCL intel 1s 0.3 0.2 0.2 0.9 3.0
OpenCL pocl 1s 0.4 0.6 0.7 1.0 3.4
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HW #9 notes

• Most issues were going out of bounds due to bad border

calculation

• On C on CPU this will give you segfault

• With an accelerator, this still is illegal, but the

asynchronous error reporting might not report the issue

until later (which makes it hard to debug what’s going

on)
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Myths and Legends in High-Performance
Computing

• Paper by Matsuoka, Domke, Wahib, Drozd, and Hoefler
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Myth1: Quantum Computing

• Unclear how quickly will progress

• Potentially limited to only certain workloads

• Seems unlikely would replace HPC
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Myth2: Deep Learning

• Concerns about accuracy

• Depends what kind of HPC output you are looking for,

and whether you need exact numerical accuracy in results
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Myth3: Extreme Specialization

• Like cellphones, where each device has special hardware

function unit

• Custom accelerators?

• The only really successful accelerator has been GPUs,

and that’s mostly due to most workloads being memory

bound

• Three reasons specialization will fail

◦ Most accelerators help with strong scaling (CPU

bound) but that’s not the current problem
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Also splitting up problem is complex, only works on

modern systems as the accelerators are homogeneous

◦ The old idea that “transistors are free” is going down

as Moore’s Law stalls. Mostly unused silicon becomes

expensive

◦ Software for accelerators is hard to write, so the

benefit must outweigh this (especially for relatively

small number of supercomputers, vs the millions of

devices regular companies sell)
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Myth4: Everything will run on Accelerators

• By accelerator they mostly mean GPU? CPUs not

needed?

• Workloads are often compute-bound, memory bandwidth

bound, or memory latency bound

• Historically things were compute and bandwidth bound.

GPUs can handle those cases. But now things becoming

latency bound, which CPUs are better at?

• There are some strong scaling workloads where FPGA

or CPUs can still outclass GPU
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Myth5: FPGAs (Reconfigurable Hardware)

• Promises of 100x speedup?

• Intel and AMD had both bought FPGA companies

without much result

• FPGAs less dense and less power efficient than CPUs

• Could be better if “hard” FPU blocks included on board

FPGA

• Though if its a large number of FPUs with some glue

logic, you’re essentially back to designing GPUs
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Myth6: Zettascale

• Intel claims Zettaflop by end of decade

• history

◦ 1 teraflop 1997 (Asci red) 0.85MW

◦ 1 petaflop 2008 (roadrunner) 2.3MW

◦ 1 exaflop 2021 (China OceanLight?) 35MW, 2022

(Frontier) 21MW

• Is it possible? Technically yes, unless Linpack stops

scaling

• More likely might be 2038 at 50MW
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Myth7: Memory/Core Ratio

• People concentrated on flops

• Led to a data movement crisis

• Rent’s rule? (?) (1960s IBM, correlation between logic

blocks and number of I/O pins needed to access it)

• Can work on optimizing this
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Myth8: Diassgregation

• What is Memory disaggregation? (sort of like network

attached storage, but for RAM rather than disks)

• Silicon Photonics

• Two issues: low cost manufacture, optical switching

• Circuit switching (crossbar?) vs Packet Switching

• Hard to buffer light or process in-flight

• Compute Express Link (CXL)

• Speed of Light Issues
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Myth9: Applications are Improving

• Three ways to avoid end of Moore’s Law (hardware)

◦ new architectures

◦ new materials (i.e., move on from CMOS)

◦ abandon von neumann computers, move to quantum

or something else

• Is there an Algorithmic Moore’s Law?

◦ is there a limit to software optimization too?
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Myth10: End of Fortran

• What is the proper lay of abstraction for optimization?

◦ low-level virtual machine?

◦ C/C++/assembly?

◦ dataflow representation?

• Domain specific languages?

• Languages like Python hard to optimize

but subsets like Numpy can be?
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Myth11: Low or Mixed Precision

• fp64 expensive

• Can break application

• Abandon IEEE-754?

• AI had interesting issue, fp16 faster than fp32, but did

not always converge. bfloat16 had wider range, but still

issue. So then 19-bit (tensorfloat-32) still faster than

fp32 but better behaved
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Myth12: The Cloud

• Cloudification of Supercomputers

many supercomputers have cloud-like features

• Supercomputerification of Clouds
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Related Supercomputer Fugaku Note

• Partnership with Amazon to create runtime identical to

Fugaku but in amazon cloud ( ARM processor )

• During peak times if SC busy, can run in cloud instead

• Can also develop on cloud before moving to SC
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Edge Computing

• Trend?

• Fog computing

• Funny how things swing back and forth from edge to

cloud and back
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Upcoming Exaflop Systems

• Aurora – see below

• El Capitan – LLNL (see below)

• Jupiter (in EU) – NVIDIA Grace Hopper GH200, NVIDIA

ARM CPUs. Rhea chips (also ARM). Infiniband NDR

Dragonfly+, 21PB flash storage, 700PB tape backup
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More Exascale

• Exascale Day – 10/18

• Frontier (OLCF-5)

ORNL

1.5 Exaflops, $600 million

AMD Epyc and Radeon Instinct GPUs, 30MW, 100 racks

• Aurora

DOE (Argonne)

Intel and Cray (now HPE)

28



originally supposed to be 2018 with Xeon Phi

1 exaFLOP

$500 million

general scientific community. low carbon tech,

subatomic particles, cancer, cosmology, solar cells

over 9000 nodes, each two Intel Sapphire Rapids CPUs,

Golden Cove, 10nm, DDR5 RAM

6 Xe ponte vecchio GPUs, chiplets

• El Capitan

LLNL (2023), NNSA

$600 million
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Replace Sierra (IBM Power9 + Nvidia)

2 Exaflops

Zen 4

less than 40MW

Infinity Fabric

Connecting nodes is AMD slingshot fabric, 200Gb/s, one

port per CPU
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Zettascale

• Eurolab- 4 -HPC Long-Term Vision on High-Performance

Computing Editors: Theo Ungerer, Paul Carpenter

• zettascale by 2030?

• convergence with big data?

• deep neural networks?

• die-stacking

• non-volatile memory

• resistive computing?

• neuromorphic computing? – try to replicate nerves in
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silicon

• quantum computing?

• nanotubes?

• graphene/diamond based transistors?

• optical networks on die / Terahertz communication

• HP Labs ”the Machine”
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Zettascale

• Challenges

• Lines of code. 10-100 Euro per line?

• Approximate Computing

• auto-tuning

• debugging and profiling

• extreme data

• cloud, big data

modern data centers 20MW cover 17 football fields

• exabytes of data, merge with cloud
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Disruptive Tech

• Moores Law continues? 1.5nm by 2030?

• DRAM to 7.7nm in 2028, 32GB/chip? Scaling DRAM

below 20nm hard

• Might be stuck at 32GB unless something new happens

• DUV argon Flouride excimer lasers, 193nm

(deep ultraviolet) excited dimer, noble gas plus reactive

gas

• die stacking, chiplets

• non-volatile memory
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• spintronics

• memristors

• Photonics, 15ps/mm in silicon, 5ps/mm in waveguides

stacked chips can have photonic layer

• mode-division multiplexing, free-air propagation,

plasmonics

• photonic non-volatile mem, photonic computing

• memristive computing

• neuromorphic

• quantum computing

d-wave, qubits, mili-Kelvin, new algos
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• nanowires

• graphene, how you make it, 100GHz transistor

• diamond transistors
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Last Notes

• Near memory / in memory computing

• power

• analog computing

• end of von neuman (memory hierarchies)

• Green computing, liquid nitrogen temps (memory story)

• System software, programming languages
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