ECE 598 — Advanced Operating

Systems
Lecture 6

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

3 February 2015



Announcements

e Homework #2 will be released shortly

e Raspberry Pi 2777



BCM2835 UART on the Pi

e Section 13 of the Peripheral Manual

e Two UARTS. Mini (pc reg layout compat) and ARM
PLO11. We use the latter.

e No IrDA or DMA support, no 1.5 stop bits.

e Separate 16x8 transmit and 16x12 receive FIFO memory.
Why 127 4 bits of error info on receive. overrun (FIFO
overflowed), break (data held low over full time), parity,
frame (missing stop bit).

-y )



e Programmable baud rate generator.

e start, stop and parity. These are added prior to
transmission and removed on reception.

e False start bit detection.
e Line break generation and detection.

e Support of the modem control functions CTS and RTS.
However DCD, DSR, DTR, and RI are not supported.

e Programmable hardware flow control.

-y 3



e Fully-programmable serial interface characteristics: data
can be 5, 6, 7, or 8 bits

e even, odd, stick, or no-parity bit generation and detection

e 1 or 2 stop bit generation
e baud rate generation, dc up to UARTCLK/16

e 1/8,1/4,1/2, 3/4, and 7/8 FIFO interrupts



BCM2835 UART

e Can map to GPIO14/15 (ALT0), GPI036/37 (ALT2),
GPI1032/33 (ALT3)

e Base ni 0x20201000, 18 registers



Hooking up Cable to Pi

e Linux should come with a driver. May need to download
PL2303 OSX or Windows driver.

e Some useful documentation:
http://www.adafruit.com/products/954
https://learn.adafruit.com/adafruits-raspberry-

e Adapter will provide 5V to your board, won't even need
to USB-micro cable.

e Hookup:

-y 6



Red (5V) to pin 2,

Black (GND) to pin 6

White (TXD) to pin 8 (GP1014)
Green (RXD) to pin 10 ( GP1O15)



Inline Assembly

e Can write assembly code from within C
e gcc inline assembly is famously hard to understand /write

e volatile keyword tells compiler to not try to optimize the
code within

static inline void delay(int32_t count) {
asm volatile("__delay_Y%=:_,subs_ %[count], Jilcount], #1;. "

"bne,__delay_%=\n"
: ¢ [count]"r"(count) : "cc");



e . output operands
= means write-only, + is read /write r=general reg

e : Input operandss

e : clobbers — list of registers that have been changed
memory is possible, as is cc for status flags

e can use %[X] to refer to reg X that can then use
[X]"r" (x) to map to C variable



MMIO

e Memory mapped /0O

e As opposed to separate 1/O space (as found on x86 and
some other processors)

e For HW#2 instead of using array for MMIO access, we
will use inline assembly

-y 10



UART Interrupts

e Supports one interrupt (UARTRXINTR), which is
signaled on the OR of the following interrupts:

1. UARTTX

2. UA
(if
3. UA

-IFO disa

Q

-IFO ¢

R

>

"MS

— UARTC

— UAR

SIN

NTR whic

R (c

"DSRINTR (c

nange in nUAR

nange in the nU

C

NTR — if FIFO less than threshold or (if
bled) no data present
NTR — if receive FIFO crosses threshold or
isabled) data is received
n can be caused by

S)

ARTDSR)

11



4. UARTEINTR (error in reception)
— UARTOEINTR (overrun error)
ARTBEINTR (break in reception)
— UARTPEINTR (parity error)
ARTFEINTR (framing error)




UART Init Code

/* Disable UART x/
mmio_write (UARTO_CR, 0xO0);

/* Setup GPIO pins 14 and 15 x/

/* Disable the pull up/down on pins 14 and 15 x/

/* See the Peripheral Manual for more info */

/* Configure to disable pull up/down and delay for 150 cycles x*/
mmio_write (GPIO_GPPUD, GPIO_GPPUD_DISABLE);

delay (150) ;

/* Pass the disable clock to GPIO pins 14 and 15 and delay*/
mmio_write (GPIO_GPPUDCLKO, (1 << 14) | (1 << 15));
delay (150) ;

/* Write O to GPPUDCLKO to make it take effect x*/
mmio_write (GPIO_GPPUDCLKO, 0x0);

/* Clear pending interrupts. */
mmio_write (UARTO_ICR, Ox7FF);

13



/* Set integer & fractional part of baud rate.
/* Divider = UART_CLOCK/(16 * Baud)

/* Fraction part register = (Fractional part x
/* UART_CLOCK = 3000000; Baud = 115200.

/* Enable FIF0 */

/* And 8N1 (8 bits of data, no parity, 1 stop

mmio_write (UARTO_LCRH, UARTO_LCRH_FEN | UARTO_

/* Mask all interrupts. */

mmio_write (UARTO_IMSC, UARTO_IMSC_CTS | UARTO_
UARTO_IMSC_TX | UARTO_
UARTO_IMSC_FE | UARTO_
UARTO_IMSC_BE | UARTO_

/* Enable UARTO, receive, and transmit x*/

mmio_write (UARTO_CR, UARTO_CR_UARTEN |
UARTO_CR_TXE |
UARTO_CR_RXE) ;

*/
*/
64) + 0.5 x/
*/

bit *x/
LCRH_WLEN_8BIT);

IMSC_RX |
IMSC_RT |
IMSC_PE |
IMSC_OE) ;

14



UART Send byte

void uart_putc(unsigned char byte) {

/* Check Flags Register x/
/* And wait until FIFO not full x/
while ( mmio_read (UARTO_FR) & UARTO_FR_TXFF ) {

+

/* Write our data byte out to the data register */
mmio_write (UARTO_DR, byte);

15



UART Receive byte

unsigned char uart_getc(void) A{

/* Check Flags Register x/

/* Wait until Receive FIFO is not empty */
while ( mmio_read (UARTO_FR) & UARTO_FR_RXFE ) {
+

/* Read and return the received data */
/* Note we are ignoring the top 4 error bits */

return mmio_read (UARTO_DR);

16



Escape Codes

o VT102/Ansi

e Historical reasons, oldest terminals. Used to be hundreds
of types supported (see termcap file)

e Color, cursor movement

e The escape character (ASCII 27) used to specify extra
commands

-y 17



Carriage Return vs Linefeed

e [ypewriters

e Carriage return (
r), go to beginning of line

e Linefeed (

n), move down a row

e DOS uses both CRLF

e UNIX uses just LF

18



e MAC uses just CR

e Which does your terminal program use?

19



Writing header files

e Including with “ " versus <>

20



Writing printk
int printk(char *string,...) {

va_list ap;
va_start(ap, string);

while (1) {
if (*string==0) break;

if (*string==’7") A
string++;
if (*string==’d’) A
string++;
x=va_arg(ap, int);

21



Scanning ATAGS

e List of variables passed by bootloader. A standard.
e \We mostly care about getting memory size.
e Size, Tag-type, additional

e Located traditionally at Ox800 but you should really
check r3 for addr.

e Starts with ATAG_CORE

-y 2



e Ends with ATAG_NONE

e We wants ATAG_MEM and maybe ATAG_CMDLINE on
Raspberry Pi.

-y 23



Parsing Command Line

e Read into buffer

e When CR or LF happens, pass buffer to string that
handles things.

e Complications: backspace? UNIX challenge

e Writing a parser, how? W /o strlen, strtok, etc?

-y 24



