
ECE 598 – Advanced Operating
Systems

Lecture 10

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 February 2015



Announcements

• Homework #1 and #2 grades, HW#3 Coming soon

1



Various Types of Memory Management

• Application

• Operating System

• Hardware

2



Application Memory Allocation on Linux

• compiler can (and will) optimize away memory accesses

when possible and optimization enabled. As long as you

don’t use a pointer to the variable (the register keyword

makes this explicit).

• Local variables on the stack

Stack auto-grows down

• Global and static variables that are initialized in the data

segment, loaded directly from disk.

3



• Global and static variables initialized to zero in the bss

segment.

• Dynamic variables allocated on the heap or via mmap

– malloc() is not a syscall, but a library call.

– Kernel interface is the brk() system call which moves

the end of the data segment (essentially making the

heap bigger)

– mmap() initially was map file into memory so can

be accessed with memory allocations rather than

read/write

4



anonymous mmap will allocate memory range with no

backing file.

5



How Heap/Malloc Works

• Memory allocation libraries can vary underneath.

Basically a big chunk of RAM is grabbed from the

OS, and then split into parts in a custom way.

• The biggest problem is fragmentation, which happens

when memory is freed in non-contiguous areas.

• dlmalloc – Doug Lea – glibc uses ptmalloc based on it.

Memory allocated in chunks, with 8 or 16-byte header

bins of same sized objects, doubly linked list

6



Small allocations (256kB?) closest power of two used

Larger, mmap used, multiple of page size.

7



Manual vs Automatic

• With C you can manually allocate and free memory.

Prone to errors:

– Use-after-free errors

– Buffer overflows

– Memory Leaks

• High-level languages such as Java will automatically

allocate memory for objects. The user never sees memory

pointers. Unused memory areas are periodically freed via

8



“garbage-collection”. At the same time the memory

can be compacted, avoiding fragmentation. Problem?

Slow, not real-time, can be complex detangling complex

memory dependency chains.

9



Memory Allocation on uclinux

• sbrk() doesnt work

• mmap

• overhead

10



Operating System Setup

11



Mono-Programming

• Simple mono-programming: just OS and one program in

memory at once (like DOS)

12



Fixed Multi-Programming

• Multiprogramming: let you run multiple tasks at once.

• Fixed Partitions of memory available. Jobs queued.

When spot frees up job can run. Can have complex

scheduling rules out which size and priority to give to

jobs. Older mainframes (OS/MFT) used this.

• Relocations a problem

• Memory protection. Permissions on pages.

13



• Solution to both protection and permission in segments

(with base offset and range that are valid to access)

14



Swapping

• Timesharing systems. All jobs not fit in RAM?

• Swapping: bring in each program in entirety, run it a

while, then when done writing all back out to disk.

• Paging: virtual memory.

15



Fragmentation

• Enough memory available, but split up. How can fix?

• Memory compaction. Swap everything out, bring it back

in (Relocating)

16



Tracking Memory

• What granularity should be used?

• Bitmap – chunks of memory, a bitmap representing it

all.

Have to search bitmap and find N consecutive empty

areas for each allocation

• Free-lists, linked list of memory areas

17



Fit Algorithms

• Scans memory, returns first block big enough to meet

request. Fastest.

• Next fit. Picks up where the last first fit case left off

(optimization)

• Best fit – search entire map and find hole that fits it

best. Actually causes more fragmentation, end up with

lots of tiny holes

• Worst Fit – always biggest hole. Not so great either.

18



• Quick Fit – separate lists for more common sizes

19



Fixed Sized Allocation

• Memory Pool – fast – blocks of pre-allocated memory in

power of two sizes that can be handed out

fast to allocate/free

fragmentation

20



Buddy Allocator

• Used by Linux

• Pre-allocated areas of various sizes

• Separate free lists for each area

• Rounds up request and tries to get for that size

If none available, try next one up.

21


