
ECE 598 – Advanced Operating
Systems

Lecture 12

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

1 March 2018

http://web.eece.maine.edu/~vweaver

Announcements

• Next homework will be due after break.

• Midterm next Thursday

We’ll review for it on Tuesday

Material will be similar to the homeworks.

1

Various Types of Memory Management

• Application

• Operating System

• Hardware

2

Application Memory Allocation on C/Linux

#include <stdio.h>

int global_x =5; /* data */

int global_y =0; /* bss */

int main(int argc , char **argv) {

int local_x =5; /* stack */

static int static_y =5; /* data */

static int static_x =0; /* bss */

char *heap_x=malloc (1024); /* heap or mmap() */

printf("Hello world\n");

return 0;

}

• Local variables on the stack

3

Stack auto-grows down

int q[1000];

sub sp ,sp ,#0 x3f0

stp x29 ,x30 ,[sp ,# -16]! // store pair , fp and lr

...

ldp x29 ,x30 ,[sp],#16

adc sp ,sp ,#0 x3f0

Can you dynamically allocate on stack? alloca(). Also

variable defined arrays (gcc extension?)

Downsides: stack overflow attacks (show example)

What happens to pointers once return

Contents at startup if not initialized.

4

• Global and static variables that are initialized in the data

segment, loaded directly from disk.

• Global and static variables initialized to zero in the bss

segment.

• Dynamic variables allocated on the heap or via mmap

◦ malloc() is not a syscall, but a library call.

◦ Kernel interface is the brk() system call which moves

the end of the data segment (essentially making the

heap bigger)

◦ mmap() initially was map file into memory so can

be accessed with memory allocations rather than

5

read/write

anonymous mmap will allocate memory range with no

backing file.

6

How Heap/Malloc Works

• Memory allocation libraries can vary underneath.

Basically a big chunk of RAM is grabbed from the

OS, and then split into parts in a custom way.

• Do you just grab a chunk of mem and return a pointer?

Or is there extra info you need to track?

• The biggest problem is fragmentation, which happens

when memory is freed in non-contiguous areas.

• dlmalloc – Doug Lea – glibc uses ptmalloc based on it.

Memory allocated in chunks, with 8 or 16-byte header

7

bins of same sized objects, doubly linked list

Small allocations (256kB?) closest power of two used

Larger, mmap used, multiple of page size.

8

Manual vs Automatic

• With C you can manually allocate and free memory.

Prone to errors:

– Use-after-free errors

– Buffer overflows

– Memory Leaks

– ALL OF THE ABOVE CAN LEAD TO ROOT

EXPLOITS

• High-level languages such as Java will automatically

9

allocate memory for objects. The user never sees memory

pointers. Unused memory areas are periodically freed via

“garbage-collection”. At the same time the memory

can be compacted, avoiding fragmentation. Problem?

Slow, not real-time, can be complex detangling complex

memory dependency chains.

• Finding bugs: Valgrind

10

Memory Allocation w/o Virtual Memory

• sbrk() doesn’t work

• mmap

• overhead

11

Brief History of Memory Handling in
Operating Systems

12

Mono-Programming

• Simple mono-programming: just OS and one program in

memory at once (like DOS)

13

Fixed Multi-Programming

• Multiprogramming: let you run multiple tasks at once.

• Fixed Partitions of memory available. Jobs queued.

When spot frees up job can run. Can have complex

scheduling rules out which size and priority to give to

jobs. Older mainframes (OS/MFT) used this.

• Relocations a problem

• Memory protection. Permissions on pages.

14

• Solution to both protection and permission in segments

(with base offset and range that are valid to access)

15

Swapping

• Timesharing systems. All jobs not fit in RAM?

• Swapping: bring in each program in entirety, run it a

while, then when done writing all back out to disk.

• Paging: virtual memory.

16

Tracking Memory

• How do we know how much memory we have?

Proing, firmware, assume

• What granularity should be used?

• Bitmap – chunks of memory, bitmap indicating free

space

Have to search bitmap and find N consecutive empty

areas for each allocation (also used by some filesystems)

• Free-lists, linked list of memory areas

17

Example

Each block size 1k bytes. 1 means used, 0 free.

0xf501f080

1111 0101 0000 0001 1111 0000 1000 0000

• Want to allocate size 18? (1 block)

• Want to allocate size 1500? (2 blocks)

• Want to allocate size 6000? (6 blocks)

• Want to allocate size 8192? (8 blocks)

• How can you quickly find how much free? Brute force,

Clever/complex C, popcnt instruction

18

Fragmentation

• Enough memory available, but split up. How can fix?

• Memory compaction. Swap everything out, bring it back

in (Relocating). Is this always possible? On Java? In C?

19

Fit Algorithms

• First Fit: scans bitmap, returns first block big enough

to meet request. Fastest.

• Next Fit: Picks up where the last first fit case left off

(optimization)

• Best fit: search entire map and find hole that fits it

best. Actually can cause more fragmentation, end up

with lots of tiny holes

• Worst Fit: always biggest hole. Not so great either.

20

• Quick Fit: separate lists for more common sizes

21

Fixed Sized Allocation

• Memory Pool – fast – blocks of pre-allocated memory in

power of two sizes that can be handed out

fast to allocate/free

fragmentation

22

Buddy Allocator

• Used by Linux

• Pick a low size, say 4k, and a high size, say 1MB

• When allocate, round up to the next power of two

• Search for free area that size. If not, scale up. If you

find one, split it into chunks until you reach the size

being looked for. Give it.

• When freeing, not only free but see if neighboring blocks

23

also free, if so, re-join them to bigger sized memory.

24

Memory Protection

• x86 segmentation

• ARM MPU Memory Protection Unit

◦ Base and size register

◦ 16 of them, can be overlapped

◦ types: normal, device (for mmio), strongly ordered

◦ data access: full, pri only, read-only, no access

◦ insn access: no-execute. Explain how ROP (return-

oriented programming) gets around this

• Virtual memory

25

