
ECE 598 – Advanced Operating
Systems

Lecture 13

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 March 2018

http://web.eece.maine.edu/~vweaver


Announcements

• Homework #6

Due after midterm. Be sure to look at memory problem.

• Trouble with vmwos. Got device-tree working.

Uninitialized data was 0s on some pis, 5s on another.

Accidentally working.

• Warnings on why its good to comment your code.

1



HW#5 Review

• Forgot to say could work in groups.

• Shell to userspace

• Avoid using sizeof() where you mean strlen()

• Add a time system call

Writing to a user-supplied pointer. Dangerous?

Linux uses more elaborate copy to user()

• Questions

◦ Nonblocking getchar

◦ Why run in userspace?

2



◦ Changing back to kernel mode

◦ What is an ABI

◦ System call of choice

manpages, from section “2”

many operate on file descriptors

chmod, inotify, exit, fork, truncate, futex, stat, wait

surprised no one said perf event open

3



Midterm Review

• Closed book/notes/computer but can bring one piece of

notebook paper (front only) with notes on it

• Questions will be similar to those from homeworks

• Topics

◦ Benefits of an OS / Downsides of an OS

◦ Serial communication: why are we using it? What does

9600 7E1 mean? How does hardware and software flow

control work?

◦ Boot process

4



◦ High level, how the GPIO interface works

◦ Interrupts: how they switch processor mode, why FIQ

is different from IRQ mode. How to switch back from

userspace.

◦ System calls

◦ ABI

◦ Memory allocation: first vs best fit

5



Idle Task Notes

• What does the system do if no jobs are ready to run?

• wfi vs msr (ARM1176 wfi is a nop)

• What happens if forget to setup a stack for the idle

task? Not an issue unless you try to add a printk to

track down a problem

6



Advanced Memory Handling

7



Security/Safety

• Want a way to mark memory regions as user only, or

read-only, or no-execute

• Some processors provide “segments” for this

• Some ARM processors have a “Memory Protection Unit”

(MPU)

• Most modern processors have an MMU (memory

management unit) to do full virtual memory

8



Using More Memory than Physically
Available

• How can you have a program that accesses more RAM

than available in physical memory?

• Swapping, as discussed before

• Can manually swap out small parts of a program, this

technique is called overlays.

• Split program in parts. Only load the part currently

9



running at any given time.

• Can we have hardware do this automatically? This is

part of the idea of virtual memory.

10



Virtual Memory

• Original purpose was to give the illusion of more main

memory than available, with disk as backing store.

• Give each process own linear view of memory.

• Demand paging (no swapping out whole processes).

• Execution of processes only partly in memory, effectively

a cache.

• Memory protection

• Reduces fragmentation

11



Diagram

Text

Data

BSS

Heap

Stack

Kernel

Text

Data

BSS

Heap

Stack

Kernel

Virtual Process 1 Virtual Process 2

Physical RAM

12



Memory Management Unit

Can run without MMU. There’s even MMU-less Linux.

How do you keep processes separate? Very carefully...

13



Page Table

• Collection of Page Table Entries (PTE)

• Some common components:

◦ ID of owner

◦ Virtual Page Number

◦ valid bit, location of page (memory, disk, etc)

◦ protection info (read only, etc)

◦ page is dirty, age (how recent updated, for LRU)

◦ Much of this info can fit in page info (lower 12 bytes

free)

14



Hierarchical Page Tables

• With 4GB memory and 4kb pages, you have 1 Million

pages per process. If each has 4-byte PTE then 4MB of

page tables per-process. Too big.

• It is likely each process does not use all 4GB at once.

(sparse) So put page tables in swappable virtual memory

themselves!

4MB page table is 1024 pages which can be mapped in

1 4KB page.

15



Hierarchical Page Table Diagram

Virtual Address

10bits 10bits 12bits

Physical Memory

Page Table

Base Address

(Stored in a register)

4MB Page Table 4kB page tables

16



Hierarchical Page Table Diagram

• 32-bit x86 chips have hardware 2-level page tables

• ARM 2-level page tables

17



Inverted Page Table

• How to handle larger 64-bit address spaces?

• Can add more levels of page tables (4? 5?) but that

becomes very slow

• Can use hash to find page. Better best case performance,

can perform poorly if hash algorithm has lots of aliasing.

18



Inverted Page Table Diagram

HASH

Physical Memory

Page Tables

Virtual 

Address

re−hash

alias

hit

19



Walking the Page Table

• Can be walked in Hardware or Software

• Hardware is more common

• Early RISC machines would do it in Software. Can be

slow. Has complications: what if the page-walking code

was swapped out?

20



TLB

• Translation Lookaside Buffer

(Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level multi-

way

• TLB shootdown – when change a setting on a mapping

and TLB invalidated on all other processors

21



Flushing the TLB

• When do you need to flush?

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out.

• Sometimes called a “TLB Shootdown”

• Hurts performance as the TLB gradually refills

• Avoiding this is why the top part is mapped to kernel

under Linux

22



What happens on a memory access

• If in TLB, not a problem, right page fetched from

physical memory, TLB updated

• If not in TLB, then the page tables are walked

• It no physical mapping in page table, then page fault

happens

23



What happens on a page fault

• Walk the page table and see if the page is valid and

there

• “minor” – page is already in memory, just need to point a

PTE at it. For example, shared memory, shared libraries,

etc.

• “major” – page needs to be created or brought in from

disk. Demand paging.

Needs to find room in physical memory. If no free space

available, needs to kick something out. Disk-backed

24



(and not dirty) just discarded. Disk-backed and dirty,

written back. Memory can be paged to disk. Eventually

can OOM. Memory is then loaded, or zeroed, and PTE

updated. Can it be shared? (zero page)

• “invalid” – segfault

25



Uses of VM in an operating system

• Process separation, security

• Each process own view of memory

• Kernel mapped into each process address space

• Auto-growing stack

• zero page?

• Memory overcommit

26



• Demand paging

• Copy-on-write with fork

27



What happens on a fork?

• Do you actually copy all of memory?

Why would that be bad? (slow, also often exec() right

away)

• Page table marked read-only, then shared

• Only if writes happen, take page fault, then copy made

Copy-on-write (COW)

28


