
ECE 598 – Advanced Operating
Systems

Lecture 16

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

29 March 2018



Announcements

• Project topics were due.

• Update on the problem with HW#7 (icache)

• Homework #8 will be posted

Filesystems, should have it out sooner than #7

Next will Be graphics, then Multi-core, then probably

security.

1



Filesystems

• Often a MBR (master boot record) and partition table

• Disks divided into partitions

◦ Why partitions?

◦ Split up system (/, /boot, /usr, /home)

◦ Why is boot separate? Smaller so boot loader can

access, maybe a different fs type.

◦ Dual-booting operating systems

◦ Swap partitions

• Then individual filesystems

2



Filesystems – Organization

• A header containing master info (often called the

superblock)

• Some sort of free list, saying what areas are free (bitmap

or pointers)

• inodes, an array of data structures containing master

info for each file (and if file is small, contents of file)

• Directory info: root directory entry, directory layout

• Actual file data

3



Filesystems – System Calls

• “mount” to put it in the proper place,

• “statfs” gives info on filesystem

(including disk space, df)

4



File Layout

• Contiguous.

◦ Files in consecutive blocks.

◦ Simple. Fast to read (just read X blocks)

◦ Has fragmentation problems like with memory alloc.

◦ What happens if append to file?

◦ Ever used? read-only, CD-ROMs

• Linked list.

◦ Inode points to first part, each block points to next.

◦ No fragmentation, seeking through file involves lots of

5



reads.

◦ Waste part of block size for next pointer

• File Allocation Table

◦ Like linked list, but the links are stored in a separate

area on disk

◦ Can also instead have the pointers in one single block,

each pointing to next block.

◦ Whole thing has to be in mem at once. Makes it faster

(no need to do lots of disk reads on seek) but problem

if structure is big

• Inode table

6



◦ Special structure named inode that holds file attributes

and list of blocks.

◦ If need more blocks then fit, last one points to another

block with more.

◦ Only has to be in memory if file is open

• Database

◦ Treat disk as if it were a database, with the files the

info you want to retrieve

7



Directory Layout

• Directory table, holding the file name and location of

the first block/inode

• Where to store attributes?

◦ In the directory entry (FAT)

◦ In the inode

• How big can a filename be?

◦ Fixed (small) like FAT

◦ Fixed (large)

◦ Dynamically sized, meaning directory entry size is

8



variable

• Searching for filenames

◦ Linear search

◦ Hash

9



Shared Files (Linking)

• What if you want to share files? Two names for same

file?

• Symbolic Link – just a simple pointer

◦ Downside, have to traverse link

◦ if original file removed end up with broken links

◦ Takes more disk space (extra inode/file)

• Hard Link – different directory entries can point to same

inode

◦ This is why filename is in dir entry but everything else

10



in inode on UNIX/Linux

◦ Trouble: what if create circular links in filesystem?

◦ What if backing up filesystem or doing a search, can

see same file multiple times

• This is why delete on Linux is called “unlink”

◦ You are just decrementing the link count.

◦ What happens when link count goes to zero?

◦ What happens if you have a file open and it gets

unlinked to zero?

◦ What happens if running an executable and it gets

deleted (maybe as part of a system upgrade?)

11



◦ Why might you do that on purpose?

12



Disk performance

• Traditionally a lot of this came down to hardware.

• Spinning rust disks; head movement, cylinders/sectors.

Reading consecutive faster, random access bad

(millisecond bad)

More complicated, fancy disk interfaces and embedded

processors. Large caches (why can that be bad), shingled

disks?

• Much of this goes away with flash disks, but still emulate

old disk interface

13



• Name lookup can also be slow.

14



Disk Block Size

• Way too much overhead to have single byte granularity

• For a long time this was 512bytes/block

Way too many for huge disks so disk drive companies

pushing for 4k (but trying to remain backward

compatible)

• Filesystems can allocate with larger blocksize.

• Large blocksize good: fewer blocks to track for each file

• Large blocksize bad: waste space on small files

15



Disk Quotas

• Don’t hear about them much any more, but on a shared

system constantly running out of disk space.

• When undergrad, shared mail server, 7MB of disk quota

• Structure on disk with quota limits, checks on file access

to make sure not go over.

16



Reliability

• What happens when the power goes out?

• Your system caches disk info (writes are slow) and only

writes them out every few seconds (best case)

◦ This is why you should unmount disks before ejecting

or pulling drive out

◦ You can also use “sync” command to force to disk

◦ Problem is, disks have own caches (and they lie, why?)

• What happens to the data that didn’t get written to

disk?

17



• What happens on next startup?

◦ Traditionally, a tool called fsck (filesystem-check)

would run and try to fix things. Find inodes without

matching direntries and try to bring them back, etc.

◦ fsck really slow, especially for large disks (hours?)

◦ also could go very wrong. (disk images on disk?)

• Journaling Filesystem

◦ A write that changes things (say remove a directory)

Removes dir, releases inodes, frees up blocks. What if

interrupted in there? Inconsistent, things not freed.

◦ Store writes to metadata separately in a circular list.

18



Then goes and done things.

◦ Make sure metadata written to disk, only then update

disk

◦ Worst case you might lose some data written, but

actual fs structure should be intact. Circular buffer.

◦ On crash plays back all it has in journal at boot

• Are disks perfect? No. Newer filesystems can store

checksums and the like

• Backups! Are you backing things up? Can you backup a

filesystem while it’s being used? Can be tricky depending

how it is designed.

19



• Snapshots – we’ll talk about this later

• Compression

• Encryption

• Defragmenting

20



Writing a Filesystem

• Linux VFS. TODO

• FUSE (userspace)

21



Common Filesystems

• Windows: NTFS, FAT

• UNIX/Linux: EXT4, BTRFS, ZFS

• OSX: HFS+, APFS (Apple Filesystem)

• Media: ISO9660, UDF

• Network: NFS, CIFS

22


