
ECE 598 – Advanced Operating
Systems

Lecture 22

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

19 April 2018

http://web.eece.maine.edu/~vweaver


Announcements

• HW#10 Still Delayed

• Still need project volunteers for Thursday

• Midterm on May 1st

1



HW#8 Review

• Was hoping for interesting timestamps, just 1/2/3 a

little boring. Could change the date as well

• Bug in df? Was not multiplying by 100 so always

returning 0?

2



HW#9 Review

• Text printing, went OK. Fore color / back color not

black/white. If made black background transparent the

gradient would shine through.

• Gradient. Hoping for continuous across. Tricky. Need

to clarify difference between horizontal and vertical

• Two groups did broken heart something cool, but

different

• Note on VGA fonts, hard to find, made my own.

• Pain of adding new syscall, update at all locations

3



In reality, just as bad on real OS like Linux.

Especially big flamewars about including kernel headers

in user programs (copy or direct link in /usr/include)

Also on Linux, how do you had new syscall number?

What if two people try to add a new one at same time?

• Alignment, mailbox specification. Mostly so can cheat

and use bottom bits for code

True often when you mess with alignment it’s for

performance, but not in this case.

• Why slow?

Framebuffer memory uncached

4



Local copy is cached (before screen) that’s why it speeds

up once caches are enabled

We update full screen on each write() even if only 1

byte, no buffering. Things like “ls” which print a byte

at a time really noticeable

It is updating screen in interrupt handler, so no interrupts

happen (look to see the LED slow down)

• What could we do?

One good one is to have a “screen dirty” flag and only

update maybe once every 64Hz or so, not in IRQ handler

but a kernel thread. Loop unrolling, writing in asm? Yes,

5



but Amdahl’s law.

6



OS Security

7



Computer Security

• Most effective security is being unconnected from the

world and locked away in a box

• Modern systems are increasingly connected to networks,

etc.

• Internet of Things

8



The Problem

• Untrusted inputs from user can be hostile.

• Users with physical access can bypass most software

security.

9



What can an attacker gain?

• Fun / Mischief

• Profit

• A network of servers that can be used for illicit purposes

(SPAM, Warez, DDOS)

• Spying on others (companies, governments, etc)

10



Sources of Attack

• Untrusted user input

Web page forms

Keyboard Input

• USB Keys (CD-ROMs)

Autorun/Autostart on Windows

Scatter usb keys around parking lot, helpful people plug

into machine.

• Network

11



cellphone modems

Ethernet/internet

wireless/bluetooth

• Backdoors

Debugging or Malicious, left in place

• Brute Force – trying all possible usernames/passwords

12



Types of Compromise

• DoS (Denial of Service)

Fork bombs, etc.

• Crash (extreme form of DoS)

“ping of death”

• User account compromise

• Root account compromise

• Privilege Escalation

13



• Rootkit

• Re-write firmware? VM? Above OS?

14



Trojan Horse and others

• Create program in home directory called “ls” that gives

you root permission, then runs actual ls. Convince

someone with root to cd to your dir and run ls. This is

why “.” is not in the search path by default.

• Fake login screen, get password (sort of like phishing)

• Backdoors

• Virus that can infect executables. How can you

detect this? Heuristics? Read-only-fs? offline list of

checksums?

15



• Worm – famously the Morris worm in the 1980s

16



Unsanitized Inputs

• Using values from users directly can be a problem if

passed directly to another process

• SQL injection attacks; escape characters can turn

a command into two, letting user execute arbitrary

SQL commands; xkcd Robert ’); DROP TABLE

Students;--

• If data (say from a web-form) directly passed to a UNIX

shell script, then by including characters like ; can issue

arbitrary commands

17



Buffer Overflows – Big Drawback of C

• User (accidentally or on purpose) copies too much data

into a fixed sized buffer.

• Data outside expected area gets over-written. This can

cause a crash (best case) or if user carefully constructs

code, can lead to user taking over program.

18



Buffer Overflow Example
void function(int *values , int size) {

int a[10];

memcpy(a,values ,size);

return;

}

Maps to
push {lr}

sub sp ,#44

memcpy

add sp ,#44

pop {pc}

19



a[0]

a[1]

a[2]

a[3]

a[4]

a[6]

a[5]

a[7]

a[8]

a[9]

link register

Stack pointer before entry

Stack pointer after prolog

A value written to a[11] overwrites the saved link register.

If you can put a pointer to a function of your choice there

you can hijack the code execution, as it will be jumped to

at function exit.

20



Mitigating Buffer Overflows

• Extra Bounds Checking / High-level Language (not C)

• Address Space Layout Randomization

• Putting lots of 0s in code (if strcpy is causing the

problem)

• Running in a “sandbox”

21



Dangling Pointer / Null Pointer
Dereference

• Typically a NULL pointer access generates a segfault

• If an un-initialized function pointer points there, and

gets called, it will crash. But until recently Linux allowed

users to mmap() code there, allowing exploits.

• Other dangling pointers (pointers to invalid addresses)

can also cause problems. Both writes and executions can

cause problems if the address pointed to can be mapped.

22



Privilege Escalation

• If you can get kernel or super-user (root) code to jump

to your code, then you can raise privileges and have a

“root exploit”

• If a kernel has a buffer-overrun or other type of error and

branches to code you control, all bets are off. You can

have what is called “shell code” generate a root shell.

23



Setuid Programs

• Some binaries are setuid.

• They run with root privilege but drop them.

• If you can make them run your code before dropping

privilege you can also have a root exploit.

• Tools such as ping (requires root to open raw socket),

X11 (needs root to access graphics cards), web-server

(needs root to open port 80).

• Ways to solve?

◦ Careful coding

24



◦ Capabilities (fine grained permissions)

◦ Can you give an exec permission *only* to open

port80?

Problem is clever hackers are good at taking one

capability and escalating to full.

25



File Creation Races

• Many programs open temporary files in /tmp and write

to them

• If you can guess the name of a /tmp file a program will

open, you can create a link or otherwise redirect it.

• Manage to create a link to /etc/shadow or similar

26


