
Quick Linux Command Overview

Vince Weaver
http://www.eece.maine.edu/∼vweaver

vincent.weaver@maine.edu

October 11, 2013

This document is intended as a quick reference for features available at the command line on a mid-sized
embedded Linux board (like a Gumstix or Raspberry-pi).

It’s a good idea to try out some of the commands just to see what they can do.

1 The Shell
After you enter your name and password at the login prompt you encounter the “shell”. This is where you
enter all of the commands.

The default shell is bash, the “Bourne Again Shell” (more computer programmer humor). There are
various shells available (bash, sh, zsh, csh, tcsh, ksh) and you can select via chfn.

2 Filesystem Layout
There are various directories off of the / root filesystem:

• Executables in /bin, /usr/bin

• System executables under /sbin, /usr/sbin

• Device nodes under /dev

• Config files under /etc

• Home directories under /home, also /root

• Temporary files under /tmp. Often wiped at reboot.

• Magic dirs under /proc, /sys

• Libraries under /lib, /usr/lib, sometimes lib64 too

• Boot files under /boot

• User and secondary files under /usr. Historically only files needed for boot were directly under /,
stuff that can be shared over network (or stored on a second drive if your first drive was too small)
would be under /usr

1

• Commercial software / pre-packaged software under /opt

• Server storage and other data /srv, /run, /var programs store data

• Default places to mount media (memory keys, CD-Roms, etc.) /media, /mnt

• If the disk checker finds lost files when fixing a disk after unclean shutdown it may put the files in
/lost+found

3 Interesting Config Files
Configuration files are stored under /etc. Pretty much every program has one, and the setup can be com-
plicated. Here’s a list of some common useful ones you find on a barebones system.

• /etc/fstab – the filesystems to mount at boot time

• /etc/passwd – list of all users, world readable

• /etc/shadow – passwords stored here for security reasons

• /etc/hostname – name of the machine

• /etc/hosts – list of local machines, usually searched before resorting to DNS lookup over network

• /etc/resolv.conf – where your nameserver address is put

• /etc/sudoers – list of users allowed to use “sudo”

• /etc/network/interfaces – on debian the network settings are stored here

4 Device Files
Under Linux, interaction with devices is often done by opening various device nodes found under /dev and
then operating on them via various syscalls (such as read(), write(), and ioctl()).

There are two types of device files, block and char. (Block devices are accessed like an array of bytes
with random access, char devices are ones you tend to read linearly). You can manually create device nodes
with mknod but these days the kernel in conjunction with other daemons create them automatically for you.

• /dev/sd* – hard disks (originally scsi disk, but now includes most disks)

• /dev/tty* – tty (teletype, logins, serial ports)

• /dev/zero – convenience device, always returns 0.

• /dev/full – always returns full.

• /dev/random, /dev/urandom – truly random and pseudo-random numbers

• /dev/null – throws away any data you copy into it

Network devices are an exception, you cannot access them through /dev.

2

5 Interesting /proc Files
These files are not on disk, but “virtual” and created on-the-fly by the operating system when you request
them.

• /proc/cpuinfo – info on cpu

• /proc/meminfo – memory info

• Each process (running program) has its own directory that has info about it

6 Processes
• Each program assigned its own number, a process id, often called a “pid”

• Can list processes with ps -efa

• Also can get real-time view of what’s going on in a system with top

• You can use kill to kill (or otherwise signal) a process

7 Commonly Used Commands
• ls : list files
ls -la : list long output, show all (hidden) files. on Linux any file starting with . is hidden
ls -la /etc : list all in /etc directory
ls *.gz : show all ending in gz. * and ? are wildcards and can be used as regular expressions.

• cd DIR : change directories (folders)
cd .. : go to parent directory
cd . : go to current directory
cd / : go to root directory
cd ∼ : go to home directory

• cat FILE – dump file to screen (originally used to conCATenate files together but more commonly
used to list files)

• more / less – list contents of file but lets you scroll through them. less more advanced version of
more

• exit / logout / control-D – log out of the machine

• df / du – show disk space
df -h pretty-prints it

• man command – show documentation (manual) for a command. For example man ls

• rm remove file. CAREFUL! Especially famous rm -rf. In general on Linux you cannot undo a
remove.

3

• cp copy file. CAREFUL! By default will overwrite the destination without prompting you.

• mv move file. CAREFUL! Can overwite!
mv -i will prompt before overwrite

• tar create archive file tar cvf output.tar dir
tar xzvf output.tar.gz uncompresses a .tar.gz file

• gzip / gunzip / bzip2 / bunzip2 compress/uncompress a file. gzip and bzip2 are two
common formats, many more exist

8 Compiler and Developer Commands
• make – build a file based on list of dependencies in Makefile

• gcc – C compiler. Simplest something like this: gcc -O2 -Wall -o hello hello.c

• g++ C++ gfortran Fortran

• as, ld – assembler and linker

• gdb – debugger – see Section 20

• objdump – disassemble a file with objdump -disassemble-all

• strace – list system calls

• git – source code management

9 Other Commands
• shutdown – used to shutdown / reboot

• last – list last people to log in

• su / sudo – switch to root, run command as root

• uptime – how long machine has been up

• uname -a – show info on the running kernel

• date – show the date
as root you can use date -s to set the date

• whoami – who are you

• write / wall / talk – write to other users

• finger – get info on other users

• w / who – see who is logged in

4

• wc – count words/bytes/lines in a file

• dmesg – print system and boot messages

• ln – link files together, sort of like a shortcut
ln -s goodbye.c hello.c – symbolic link. also hard links

• dd – move disk blocks around, often used for creating disk images

• mount / umount – mount or unmount filesystems

• mkfs.ext3 – make new filesystem

• e2fsck – filesystem check

• ifconfig / route – show and setup network config

• dpkg / apt-get update/upgrade/install – debian only package management

• ssh / scp – log into other machines, copy files remotely

• lynx – text-based web browser

• reset – clear the screen and reset settings (useful if you accidentally cat a binary file and end up with
a screenful of garbage). Control-L also refreshes the screen

• linux_logo – my program

• adduser – add a user to the system

10 Editing files
Linux and UNIX have many, many editors available. Most famous are vi and emacs. On our board using
nano might be easiest.

• nano – a simple text editor.
nano FILENAME – edit a filename
It shows the commands you can do at the bottom. ˆO means press control-O
control-O : writes
control-X : exits
control-W : searches
control-\: search and replace
control-C : prints line number
control-K : cuts lines
control-U : pastes recently cut lines

5

11 Redirection and Pipes
• redirect to a file : ls > output

• redirect from a file : wc < output

• pipe from one command to another : ls | wc, dmesg | less

• re-direct stderr : strace 2> output

12 Job Control
And by job we mean the same thing as a running program or process.

• Press control-C to kill a job

• Press control-Z to suspend a job

• Type bg to continue it in the background

• Type fg to resume it (bring to foreground)

• Run with & to put in background to start with. (ie, mpg123 music.mp3 &).

13 Permissions
Files have various permissions that say who can access them.

Usually they are owned by a user or group. Additionally they have read/write/execute permissions.
You can see the permissions on a file with ls -l. To the far left are the permissions; the first column are

the user (your) permissions, the middle group (everyone in your group) permissions, and the last is global
(everyone) permissions.

• user, group – use chgrp to change

• read/write/execute – use chmod to change

14 Shell Scripts
It is possible to quickly write a script that executes a series of shell commands. Just put the commands in
a file and mark it executable. It’s possibly to make very complicated scripts, as the shell contains a full
scripting language.

• Create a list of files in a dir

• Start with the shell, #/bin/sh (or perl, etc)

• Make executable chmod +x myfile

6

15 Command Line History
It is useful when doing a lot of command line work to access previously typed commands or have the
commands automatically completed.

• Can press “tab” to auto-complete a command

• Can press “up arrow” to re-use previous commands

• Can use “control-R” to search for previous commands

16 Environment Variables
These variables go with your shell, and programs you run can access them.

• env lists all the current variables.

• How to set these varies from shell to shell. With bash export TERM=vt102

• The PATH variable shows the search path for executables. You’ll note “.” isn’t in the path. This is
for security reasons. If you were in another user’s directory they could do things like create a hostile
program called ls and then if you typed ls it would run their code rather than the real command.
This is why when you compile a program, to run it you have to prepend it with ./.

17 Configuring Sudo
When doing embedded work it is handy to be able to run commands as root without having to keep using
“su” to become root. In this case it is useful to set up the “sudo” command. With that you can run a single
command as root, entering only your user password. Something like sudo ls /root.

To do this, either run visudo or open the /etc/sudoers file. Add an entry toward the bottom with
vince ALL=(ALL:ALL) ALL replacing “vince” with your username.

18 Package Management
Linux programs are often distributed as “packages” which are file archives holding all of the parts needed to
install a program. This includes the binaries, config files, libraries, documentation, etc. They also typically
containing a list of dependencies on other packages that will need to be installed.

Two common file types you’ll find are .rpm and .deb. rpm is used by RedHat, Fedora, SuSE and a
few others. deb is used by Debian and Ubuntu. You may also find .tar.gz (or .tar.bz2 or .tar.xz) files. These
usually contain source code (which you typically install by tar -xvf file.tar.gz ; cd file ;
./configure ; make ; sudo make install) but they also sometimes carry binary files that can
be installed by an included script. Read documentation that comes with them for how to install.

I will talk about Debian systems here, as that’s what I typically use. There are tools called dpkg and
apt which handle package management for you. If you get a .deb file you can run dpkg -i file.deb
to install it. Better is to use apt.

7

On your system run sudo apt-get update to update the local list of all packages available. You
can run sudo apt-get upgrade to upgrade any packages that need it. To find packages that are avail-
able you can run apt-cache search keyword. To install a package from that list do something like
sudo apt-get install packagename and assuming you have a network connection it will down-
load and install the program and any dependencies for you.

19 Using Minicom to Connect to a Serial Port
When using an embedded system, one does not always have the luxury of a keyboard/display or even a
network connection. If you’re lucky you might have a serial port you can connect to.

You can use minicom to connect to these devices. The commands for minicom can be a bit obscure, it is
based on the old DOS Telix program.

First find out which serial port you are using. On older machines with an actual serial port it is something
like /dev/ttyS0, but these days most people are using USB/Serial devices. Plug in the USB cable and use
dmesg to check the logs, it will usually be something like /dev/ttyUSB0.

Start minicom, you can use something like minicom -D /dev/ttyUSB0.
Configure the settings. Control-A followed by Z will bring up a help menu. You can set the serial port

to the proper speed, usually 115200 8N1.
If backspace in the terminal doesn’t work, and full-screen apps are corrupted, you might have to set

the terminal emulation. Try VT102, so be sure minicom is in that mode, and at the prompt type export
TERM=vt102.

If you get output from your board, but typing doesn’t work, try going into the serial port settings and
flipping the values for HW flow control and SW flow control.

To transfer files, the easiest way is to install the lrzsz package.
To send a file to the board, in the window type rz and in minicom type Control-A S. Select file to send

by navigating the menu and pressing space bar twice to select.
To receive a file from the board, in the window type sz filename and in minicom Control-A R.

20 Debugging with gdb
The debugger most commonly used on Linux is gdb. Unlike the nice integrated-debugging environments
you can get for Windows, gdb is a hard-to-use command-line program. (There are graphical frontends you
can get, but they don’t necessarily work well in an embedded environment).

For this example, let’s say we have a program called test1 that we want to debug.
To debug it, run gdb ./test1. This should give you a gdb prompt.
To run within the debugger, type run x y z and replace x y z with any command line arguments you

might want (or leave blank).
If your program crashes, gdb will stop and give you a prompt and you can debug from there. Otherwise

you will need to set a breakpoint. This can be tricky. To add a breakpoint at a function call you can do
something like break read. Replace read with the name of the function you want. If you’re programming
in assembly you can also set breakpoints on label names. If you want to set a breakpoint on an address, it is
something like break *0xdeadbeef replacing 0xdeadbeef with the address you want.

Once your program is stopped, you can do many things. A sampling:

• Dump the registers info regis

8

• Disassemble the current code block disassem

• Step forward one function call step

• Step forward one assembly language instruction stepi

• Examine a memory address x 0xdeadbeef replace 0xdeadbeef with the address of interest.

To continue a program to the next breakpoint, type cont.
To quit, just type quit
When a program crashes, you can have it generate a “core dump” containing the state of the program

at crash, and load it into the debugger. You first have to enable the coredump, something like ulimit
-c unlimited. Then when the program crashes, it will say something like segmentation fault,
core dumped and a core file is created. Then run gdb ./prog_name ./core (replacing with your
proper program name for prog_name) and gdb will start with all the info from the time of the dump.

9

	The Shell
	Filesystem Layout
	Interesting Config Files
	Device Files
	Interesting /proc Files
	Processes
	Commonly Used Commands
	Compiler and Developer Commands
	Other Commands
	Editing files
	Redirection and Pipes
	Job Control
	Permissions
	Shell Scripts
	Command Line History
	Environment Variables
	Configuring Sudo
	Package Management
	Using Minicom to Connect to a Serial Port
	Debugging with gdb

