
Can Hardware Performance Counters be Trusted?

Vincent M. Weaver and Sally A. McKee

Computer Systems Laboratory

Cornell University

{vince,sam}@csl.cornell.edu

Abstract

When creating architectural tools, it is essential to know

whether the generated results make sense. Comparing a

tool’s outputs against hardware performance counters on

an actual machine is a common means of executing a quick

sanity check. If the results do not match, this can indi-

cate problems with the tool, unknown interactions with the

benchmarks being investigated, or even unexpected behav-

ior of the real hardware. To make future analyses of this

type easier, we explore the behavior of the SPEC bench-

marks with both dynamic binary instrumentation (DBI)

tools and hardware counters.

We collect retired instruction performance counter data

from the full SPEC CPU 2000 and 2006 benchmark suites

on nine different implementations of the x86 architecture.

When run with no special preparation, hardware counters

have a coefficient of variation of up to 1.07%. After analyz-

ing results in depth, we find that minor changes to the exper-

imental setup reduce observed errors to less than 0.002%

for all benchmarks. The fact that subtle changes in how

experiments are conducted can largely impact observed re-

sults is unexpected, and it is important that researchers us-

ing these counters be aware of the issues involved.

1 Introduction

Hardware performance counters are often used to char-

acterize workloads, yet counter accuracy studies have

seldom been publicly reported, bringing such counter-

generated characterizations into question. Results from

counters are treated as accurate representations of events oc-

curring in hardware, when, in reality, there are many caveats

to the use of such counters.

When used in aggregate counting mode (as opposed to

sampling mode), performance counters provide architec-

tural statistics at full hardware speed with minimal over-

head. All modern processors support some form of coun-

ters. Although originally implemented for debugging hard-

ware designs during development, they have come to be

used extensively for performance analysis and for validat-

ing tools and simulators. The types and numbers of events

tracked and the methodologies for using these performance

counters vary widely, not only across architectures, but also

across systems sharing an ISA. For example, the Pentium

III tracks 80 different events, measuring only two at a time,

but the Pentium 4 tracks 48 different events, measuring up

to 18 at a time. Chips manufactured by different compa-

nies have even more divergent counter architectures: for in-

stance, AMD and Intel implementations have little in com-

mon, despite their supporting the same ISA. Verifying that

measurements generate meaningful results across arrays of

implementations is essential to using counters for research.

Comparison across diverse machines requires a common

subset of equivalent counters. Many counters are unsuitable

due to microarchitectural or timing differences. Further-

more, counters used for architectural comparisons must be

available on all machines of interest. We choose a counter

that meets these requirements: number of retired instruc-

tions. For a given statically linked binary, the retired in-

struction count should be the same on all machines imple-

menting the same ISA, since the number of retired instruc-

tions excludes speculation and cache effects that complicate

cross-machine correlation. This count is especially relevant,

since it is a component of both the Cycles per Instruction

(CPI) and (conversely) Instructions per Cycle (IPC) metrics

commonly used to describe machine performance.

The CPI and IPC metrics are important in computer ar-

chitecture research; in the rare occasion that a simulator is

actually validated [19, 5, 7, 24] these metrics are usually

the ones used for comparison. Retired instruction count and

IPC are also used for vertical profiling [10] and trace align-

ment [16], which are methods of synchronizing data from

various trace streams for analysis.

Retired instruction counts are also important when gen-

erating basic block vectors (BBVs) for use with the popu-

lar SimPoint [9] tool, which tries to guide statistically valid

partial simulation of workloads that, if used properly, can

greatly reduce experiment time without sacrificing accuracy



in simulation results. When investigating the use of DBI

tools to generate BBVs [26], we find that even a single extra

instruction counted in a basic block (which represents the

code executed in a SimPoint) can change which simulation

points the SimPoint tool chooses to be most representative

of whole program execution.

All these uses of retired instruction counters assume that

generated results are repeatable, relatively deterministic,

and have minimal variation across machines with the same

ISA. Here we explore whether these assumptions hold by

comparing the hardware-based counts from a variety of ma-

chines, as well as comparing to counts generated by Dy-

namic Binary Instrumentation (DBI) tools.

2 Related Work

Black et al. [4] use performance counters to investigate

the total number of retired instructions and cycles on the

PowerPC 604 platform. Unlike our work, they compare

their results against a cycle-accurate simulator. The study

uses a small number of benchmarks (including some from

SPEC92), and the total number of instructions executed is

many orders of magnitude fewer than in our work.

Patil et al. [18] validate SimPoint generation using CPI

from Itanium performance counters. They compare differ-

ent machines, but only the SimPoint-generated CPI values,

not the raw performance counter results.

Sherwood et al. [20] compare results from performance

counters on the Alpha architecture with SimpleScalar [2]

and the Atom [21] DBI tool. They do not investigate

changes in counts across more than one machine.

Korn, Teller, and Castillo [11] validate performance

counters of the MIPS R12000 processor via microbench-

marks. They compare counter results to estimated

(simulator-generated) results, but do not investigate the

instructions graduated metric (the MIPS equiva-

lent of retired instructions). They report up to 25% er-

ror with the instructions decoded counter on long-

running benchmarks. This work is often cited as motivation

for why performance counters should be used with caution.

Maxwell et al. [14] look at accuracy of performance

counters on a variety of architectures, including a Pen-

tium III system. They report less than 1% error on the re-

tired instruction metric, but only for microbenchmarks and

only on one system. Mathur and Cook [13] look at hand-

instrumented versions of nine of the SPEC 2000 bench-

marks on a Pentium III. They only report relative error of

using sampled versus aggregate counts, and do not investi-

gate overall error. DeRose et al. [6] look at variation and

error with performance counters on a Power3 system, but

only for startup and shutdown costs. They do not report

total benchmark behavior.

3 Experimental Setup

We run experiments on multiple generations of x86 ma-

chines, listed in Table 1. All machines run the Linux

2.6.25.4 kernel patched to enable performance counter col-

lection with the perfmon2 [8] infrastructure. We use the

entire SPEC CPU 2000 [22] and 2006 [23] benchmark

suites with the reference input sets. We compile the SPEC

benchmarks on a SuSE Linux 10.1 system with version

4.1 of the gcc compiler and -O2 optimization (except for

vortex, which crashes when compiled with optimization).

All benchmarks are statically linked to avoid variations due

to the C library. We use the same 32-bit, statically linked

binaries for all experiments on all machines.

We gather Pin [12] results using a simple instruction

count utility via Pin version pin-2.0-10520-gcc.4.0.0-ia32-

linux. We patch Valgrind [17] 3.3.0 and Qemu [3] 0.9.1 to

generate retired instruction counts. We gather the DBI re-

sults on a cluster of Pentium D machines identical to that

described in Figure 1. We configure pfmon [8] to gather

complete aggregate retired instruction counts, without any

sampling. The tool runs as a separate process, enabling

counting in the OS; it requires no changes to the application

of interest and induces minimal overhead during execution.

We count user-level instructions specific to the benchmark.

We collect at least seven data points for every bench-

mark/input combination on each machine and with each

DBI method (the one exception is the Core2 machine,

which has hardware problems that limit us to three data

points for some configurations). The SPEC 2006 bench-

marks require at least 1GB of RAM to finish in a reason-

able amount of time. Given this, we do not run them on the

Pentium Pro or Pentium II, and we do not run bwaves,

GemsFDTD, mcf, or zeusmp on machines with small

memories. Furthermore, we omit results for zeusmp with

DBI tools, since they cannot handle the large 1GB data seg-

ment the application requires.

4 Sources of Variation

We focus on two types of variation when gathering per-

formance counter results. One is inter-machine variations,

the differences between counts on two different systems.

The other is intra-machine variations, those found when

running the same benchmark multiple times on the same

system. We investigate methods for reducing both types.

4.1 The fldcw instruction

For instruction counts to match on two machines, the in-

structions involved must be counted the same way. If not,

this can cause large divergences in total counts. On Pen-

tium 4 systems, the instr retired:nbogusntag per-



Processor Speed Bits Memory
L1 I/D L2 Retired Instruction Counter /
Cache Cache Cycles Counter

Pentium Pro 200MHz 32 256MB 8KB/8KB 512KB
inst retired

cpu clk unhalted

Pentium II 400MHz 32 256MB 16KB/16KB 512KB
inst retired

cpu clk unhalted

Pentium III 550MHz 32 512MB 16KB/16KB 512KB
inst retired

cpu clk unhalted

Pentium 4 2.8GHz 32 2GB 12Kµ/16KB 512KB
instr retired:nbogusntag

global power events:running

Pentium D 3.46GHz 64 4GB 12Kµ/16KB 2MB
instr completed:nbogus

global power events:running

Athlon XP 1.733GHz 32 768MB 64KB/64KB 256KB
retired instructions
cpu clk unhalted

AMD Phenom 2.2GHz 64 2GB 64KB/64KB 512KB
retired instructions
cpu clk unhalted

Core Duo 1.66GHz 32 1GB 32KB/32KB 1MB
instructions retired

unhalted core cycles

Core2 Q6600 2.4GHz 64 2GB 32KB/32KB 4MB
instructions retired

unhalted core cycles

Table 1. Machines used for this study.

benchmark fldcw instructions % overcount

482.sphinx3 23,816,121,371 0.84%
177.mesa 6,894,849,997 2.44%
481.wrf 1,504,371,988 0.04%
453.povray 1,396,659,575 0.12%
456.hmmer retro 561,271,823 0.03%
175.vpr place 405,499,739 0.37%
300.twolf 379,247,681 0.12%
483.xalancbmk 358,907,611 0.03%
416.gamess cytosine 255,142,184 0.02%
435.gromacs 230,286,959 0.01%
252.eon kajiya 159,579,683 0.15%
252.eon cook 107,592,203 0.13%

Table 2. Dynamic count of fldcw instructions,
showing all benchmarks with over 100 mil­

lion. This instruction is counted as two in­

structions on Pentium 4 machines but only as
one instruction on all other implementations.

formance counter counts fldcw as two retired instructions;

on all other x86 implementations fldcw counts as one.

This instruction is common in floating point code: it is used

in converting between floating point and integer values. It

alone accounts for a significant divergence in the mesa and

sphinx3 benchmarks. Table 2 demonstrates occurrences

in the SPEC benchmarks where the count is over 100 mil-

lion. We modify Valgrind to count the fldcw instructions,

and use these counts to adjust results when presenting Pen-

tium 4 data. It should be possible to use statistical methods

to automatically determine which type of opcode causes di-

vergence in cases like this; this is part of ongoing work.

We isolated the fldcw problem by using a tedious binary

search of the mesa source code.

4.2 Using the Proper Counter

Pentium 4 systems after the model 6 support a

instr completed:nbogus counter, which is more ac-

curate than the instr retired:nbogusntag counter

found on previous models. This newer counter does not

suffer the fldcw problem described in Section 4.1. Unfor-

tunately, all systems do not include this counter; our Pen-

tium D can use it, but our older Pentium 4 systems can-

not. This counter is not well documented, and thus it was

not originally available within the perfmon infrastructure.

We contributed counter support that has been merged into

the main perfmon source tree.

4.2.1 Virtual Memory Layout

It may seem counterintuitive, but some benchmarks behave

differently depending on where in memory their data struc-

tures reside. This causes much of the intra-machine varia-

tion we see across the benchmark suites. In theory, memory

layout should not affect instruction count. In practice, both

parser and perlbench exhibit this problem. To under-

stand how this can happen, it is important to understand the

layout of virtual memory on x86 Linux. In general, pro-

gram code resides near the bottom of memory, with initial-

ized and uninitialized data immediately above. Above these

is the heap, which grows upward. Near the top of virtual

memory is the stack, which grows downward. Above that

are command line arguments and environment variables.

Typical programs are insensitive to virtual address as-

signments for data structures. Languages that allow point-

ers to data structures make the virtual address space “visi-

ble”. Different pointer values only affect instruction counts

if programs act on those values. Both parser and

perlbench use pointers as hash table keys. Differing ta-

ble layouts can cause hash lookups to use different num-



bers of instructions, causing noticeable changes in retired

instruction counts.

There are multiple reasons why memory layout can vary

from machine to machine. On Linux the environment vari-

ables are placed above the stack; a differing number of en-

vironment variables can change the addresses of local vari-

ables on the stack. If the addresses of these local variables

are used as hash keys then the size and number of environ-

ment variables can affect the total instruction count. This

happens with perlbench; Mytkowicz et al. [15] docu-

ment the effect, finding that it causes execution time differ-

ences of up to 5%.

A machine’s word size can have unexpected effects on

virtual memory layout. Systems running in 64-bit mode can

run 32-bit executables in a compatibility mode. By default,

however, the stack is placed at a higher address to free extra

virtual memory space. This can cause inter-machine varia-

tions, as local variables have different addresses on a 64-bit

machine (even when running a 32-bit binary) than on a true

32-bit machine. Running the Linux command linux32

-3 before executing a 32-bit program forces the stack to be

in the same place it would be on a 32-bit machine.

Another cause of varied layout is due to virtual memory

randomization. For security reasons, recent Linux kernels

randomize the start of the text, data, bss, stack, heap, and

mmap() regions. This feature makes buffer-overrun attacks

more difficult, but the result is that programs have different

memory address layouts each time they are run. This causes

programs (like parser) that use heap-allocated addresses

as hash keys to have different instruction counts every time.

This behavior is disabled system wide by the command:

echo 0 >

/proc/sys/kernel/randomize_va_space

It is disabled at a per-process level with the -R option to

the linux32 command. For our final runs, we use the

linux32 -3 -R command to ensure consistent virtual

memory layout, and we use a shell script to force environ-

ment variables to be exactly 422 bytes on all systems.

4.3 Processor Errata

There are built-in limitations to performance counter ac-

curacy. Some are intended, and some are unintentional by-

products of the processor design. Our results for our 32-bit

Athlon exhibit some unexplained divergences, leading us to

investigate existing errata for this processor [1]. The errata

mention various counter limitations that can result in incor-

rect total instruction counts. Researchers must use caution

when gathering counts on such machines.

4.3.1 System Effects

Any Operating System or C library call that returns non-

deterministic values can potentially lead to divergences.

This includes calls to random number generators; anything

involving the time, process ID, or thread synchronizations;

and any I/O that might involve errors or partial returns. In

general, the SPEC benchmarks carefully avoid most such

causes of non-determinism; this would not be the case for

many real world applications.

OS activity can further perturb counts. For example, we

find that performance counters for all but the Pentium 4 in-

crease once for every page fault caused by a process. This

can cause instruction counts to be several thousands higher,

depending on the application’s memory footprint. Another

source of higher instruction counts is related to the number

of timer interrupts incurred when a program executes; this

is possibly proportional to the number of context switches.

The timer based perturbation is most noticeable on slower

machines, where longer benchmark run times allow more

interrupts to occur. Again, the Pentium 4 counter is not af-

fected by this, but all of the other processors are. In our

final results, we account for perturbations due to timer in-

terrupt but not for those related to page faults. There are

potentially other OS-related effects which have not yet been

discovered.

4.4 Variation from DBI Tools

In addition to actual performance counter results, com-

puter architects use various tools to generate retired instruc-

tion counts. Dynamic Binary Instrumentation (DBI) is a

fast way to analyze benchmarks, and it is important to know

how closely tool results match actual hardware counts.

4.4.1 The rep Prefix

An issue with the Qemu and Valgrind tools involves the

x86 rep prefix. The rep prefix can come before string in-

structions, causing the the string instruction to repeat while

decrementing the ecx register until it reaches zero. A naive

implementation of this prefix counts each repetition as a

committed instruction, and Valgrind and Qemu do this by

default. This can cause many excess retired instructions to

be counted, as shown in Table 3. The count can be up to

443 billion too high for the SPEC benchmarks. We modify

the DBI tools to count only the rep prefixed instruction as

a single instruction, as per the relevant hardware manuals.

4.4.2 Floating Point Rounding

Dynamic Binary Instrumentation tools can make floating

point problematic, especially for x86 architectures. Default

x86 floating point mode is 80-bit FP math, not commonly



found in other architectures. When translating x86 instruc-

tions, Valgrind uses 64-bit FP instructions for portability.

In theory, this should cause no problems with well writ-

ten programs, but, in practice, it occasionally does. The

move to SSE-type FP implementations on newer machines

decreases the problem’s impact, although new instructions

may also be sources of variation.

The art benchmark. The art benchmark uses many

fewer instructions on Valgrind than on real hardware. This

is due to the use of the “==” C operator to compare floating

point numbers. Rounding errors between 80-bit and 64-bit

versions of the code cause the 64-bit versions to finish with

significantly different instruction counts (while still gener-

ating the proper reference output). This is because a loop

waiting for a value being divided to fall below a certain limit

can happen faster when the lowest bits are being truncated.

The proper fix is to update the DBI tools to handle 80-bit

floating point properly. A few temporary workarounds can

be used: passing a compiler option to use only 64-bit float-

ing point, having the compiler generate SSE rather than x87

floating point instructions, or adding an instruction to the

offending source code to force the FPU into 64-bit mode.

The dealII benchmark. The dealII SPEC CPU

2006 benchmark is problematic for Valgrind, much like

art. In this case, the issue is more critical: the program

enters an infinite loop. It waits for a floating point value to

reach an epsilon value smaller than can be represented with

64-bit floating point. The authors of dealII are aware of

this possibility, since source code already has a #define

to handle this issue on non-x86 architectures.

benchmark rep counts % overcount

464.h264ref sss main 443,109,753,850 15.7%
464.h264ref fore main 45,947,752,893 14.2%
482.sphinx3 33,734,602,541 1.2%
403.gcc s04 33,691,268,130 18.8%
403.gcc c-typeck 30,532,770,775 21.7%
403.gcc expr2 26,145,709,200 16.3%
403.gcc g23 23,490,076,359 12.1%
403.gcc expr 18,526,142,466 15.7%
483.xalancbmk 15,102,464,207 1.2%
403.gcc cp-decl 14,936,880,311 13.6%
450.soplex pds-50 11,760,258,188 2.5%
453.povray 10,303,766,848 0.9%
403.gcc 200 10,260,100,762 6.1%

Table 3. Potential excesses in dynamic
counted instructions due to the rep prefix

(only benchmarks with more than 10 billion

are shown).

4.4.3 Virtual Memory Layout

When instrumenting a binary, DBI tools need room for their

own code. The tools try to keep layout as close as possible

to what a normal process would see, but this is not always

possible, and some data structures are moved to avoid con-

flicts with memory needed by the tool. This leads to pertur-

bations in the instruction counts similar to those exhibited

in Section 4.2.1.

5 Summary of Findings

Figure 1 shows the coefficient of variation for SPEC

CPU 2000 benchmarks before and after our adjustments.

Large variations in mesa, perlbmk, vpr, twolf, and

eon are due to the Pentium 4 fldcw problem described in

Section 4.1. Once adjustments are applied, variation drops

below 0.0006% in all cases. Figure 2 shows similar re-

sults for SPEC CPU 2006 benchmarks. Larger variations

for sphinx3 and povray are again due to the fldcw

instruction. Once adjustments are made, variations drop be-

low 0.002%. Overall, the CPU 2006 variations are much

lower than for CPU 2000; the higher absolute differences

are counterbalanced by the much larger numbers of total

retired instructions. These results can be misleading: a

billion-instruction difference appears small in percentage

terms when part of a three trillion instruction program, but

in absolute terms it is large. When attempting to capture

phase behavior accurately using SimPoint with an interval

size of 100 million instructions, a phase’s being offset by

one billion instructions can alter final results.

5.1 Intra­machine results

Figure 3 shows the standard deviations of results across

the CPU 2000 and CPU 2006 benchmarks for each machine

and DBI method. DBI results are shown, but not incorpo-

rated into standard deviations. In all but one case the stan-

dard deviation improves, often by at least an order of mag-

nitude. For CPU 2000 benchmarks, perlbmk has large

variation for every generation method. We are still investi-

gating the cause. In addition, the Pin DBI tool has a large

outlier with the parser benchmark, most likely due to is-

sues with consistent heap locations. Improvements for CPU

2006 benchmarks are less dramatic, with large standard de-

viations due to high outlying results. On AMD machines,

perlbench has larger variation than on other machines,

for unknown reasons. The povray benchmark is an out-

lier on all machines (and on the DBI tools); this requires

further investigation. The Valgrind DBI tool actually has

worse standard deviations after our methods are applied due

to a large increase in variation with the perlbench bench-

marks. For the CPU 2006 benchmarks, similar platforms



256.bzip2.graphic

256.bzip2.program

256.bzip2.source

186.crafty
.default

252.eon.cook

252.eon.kajiya

252.eon.ru
shmeier

254.gap.default

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.in
tegrate

176.gcc.scila
b

164.gzip.graphic

164.gzip.lo
g

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

181.m
cf.d

efault

197.parser.d
efault

253.perlb
mk.535

253.perlb
mk.704

253.perlb
mk.957

253.perlb
mk.850

253.perlb
mk.diffm

ail

253.perlb
mk.m

akerand

253.perlb
mk.perfe

ct

300.tw
olf.d

efault

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

175.vpr.p
lace

175.vpr.ro
ute

1

0.001

1e-6

1e-9

C
o

e
ff

ic
ie

n
t 

o
f

V
a

ri
a

ti
o

n
 (

lo
g

)

Original After Adjustments

188.ammp.default

173.applu.default

301.apsi.d
efault

179.art.1
10

179.art.4
70

183.equake.default

187.fa
cerec.default

191.fm
a3d.default

178.galgel.d
efault

189.lu
cas.default

177.m
esa.default

172.m
grid

.default

200.sixtra
ck.default

171.swim
.default

168.w
upwise.default

1

0.001

1e-6

1e-9

C
o
e
ff
ic

ie
n
t 
o
f

V
a
ri
a
ti
o
n
 (

lo
g
)

Original After Adjustments 1.07%

Figure 1. SPEC 2000 Coefficient of variation. The top graph shows integer benchmarks, the bottom, floating

point. The error variation from mesa, perlbmk, vpr, twolf and eon are primarily due to the fldcw

miscount on the Pentium 4 systems. Variation after our adjustments becomes negligible.

473.astar.B
igLakes

473.astar.ri
vers

401.bzip2.chicken

401.bzip2.combined

401.bzip2.htm
l

401.bzip2.lib
erty

401.bzip2.program

401.bzip2.source

403.gcc.166

403.gcc.200

403.gcc.c-ty
peck

403.gcc.cp-decl

403.gcc.expr

403.gcc.expr2

403.gcc.g23

403.gcc.s04

403.gcc.scila
b

445.gobmk.13x13

445.gobmk.nngs

445.gobmk.score2

445.gobmk.tre
vorc

445.gobmk.tre
vord

464.h264ref.fo
reman_baselin

e

464.h264ref.fo
reman_main

464.h264ref.s
ss_main

456.hmmer.n
ph3

456.hmmer.re
tro

462.lib
quantum.default

429.m
cf.d

efault

471.omnetpp.default

400.perlb
ench.checkspam

400.perlb
ench.diffm

ail

400.perlb
ench.splitm

ail

458.sjeng.default

483.xalancbmk.default

1

0.001

1e-6

1e-9

C
o

e
ff

ic
ie

n
t 

o
f

V
a

ri
a

ti
o

n
 (

lo
g

)

Original After Adjustments

410.bwaves.default

436.cactusADM.default

454.calculix.default

447.dealII.
default

416.gamess.cytosine

416.gamess.h2ocu2

416.gamess.tri
azoliu

m

459.G
emsFDTD.default

435.gromacs.default

470.lb
m.default

437.le
slie

3d.default

433.m
ilc.default

444.namd.default

453.povray.default

450.soplex.pds-50

450.soplex.re
f

482.sphinx3.default

465.to
nto.default

481.w
rf.d

efault

434.zeusmp.default

1

0.001

1e-6

1e-9

C
o
e
ff
ic

ie
n
t 
o
f

V
a
ri
a
ti
o
n
 (

lo
g
)

Original After Adjustments 0.41%

Figure 2. SPEC 2006 Coefficient of variation. The top graph shows integer benchmarks, bottom, floating

point. The original variation is small compared to the large numbers of instructions in these benchmarks. The

largest variation is in sphinx3, due to fldcw instruction issues. Variation after our adjustments becomes
orders of magnitude smaller.



Pentiu
m Pro

Pentiu
m II

Pentiu
m III

Pentiu
m 4

Pentiu
m D

Athlon XP

Phenom 9500

Core D
uo

Core2 Q
6600 Pin

Qemu

Valgrin
d

0

100

10k

1M

100M

-100

-10k

-1M

-100M

D
if
fe

re
n
c
e
 f
ro

m
 M

e
a
n
 (

lo
g
)

D
if
fe

re
n
c
e
 f
ro

m
 M

e
a
n
 (

lo
g
)

pppp pppp

s

pppp
p

pppp
p

pp
pp pp

pp

pp
pp c

pp
pp a

a
e
f

pp
pp pppp

p

p
p
pp

pp
pp

Original Standard Deviation Updated Standard Deviation

Pentiu
m Pro

Pentiu
m II

Pentiu
m III

Pentiu
m 4

Pentiu
m D

Athlon XP

Phenom 9500

Core D
uo

Core2 Q
6600 Pin

Qemu

Valgrin
d

0

100

10k

1M

100M

-100

-10k

-1M

-100M

D
if
fe

re
n
c
e
 f
ro

m
 M

e
a
n
 (

lo
g
)

D
if
fe

re
n
c
e
 f
ro

m
 M

e
a
n
 (

lo
g
)

p m

p

p

p
p

p
pp
p pp

p

p h
hhlmo

x
b
cc

d
gG
g
lm

st
wz

p
s g

l

p

z
g

ps
s p

p
p

Original Standard Deviation Updated Standard Deviation

Figure 3. Intra-machine results for SPEC CPU 2000 (above) and CPU 2006 (below). Outliers are indicated

by the first letter of the benchmark name and a distinctive color. For CPU 2000, the perlbmk benchmarks

(represented by grey ‘p’s) are a large source of variation. For CPU 2006, the perlbench (green ‘p’) and
povray (grey ‘p’) are the common outliers. Order of plotted letters for outliers has no intrinsic meaning, but

tries to make the graphs as readable as possible. Horizontal lines summarize results for remaining bench-

marks (they’re all similar). The message here is that most platforms have few outliers, and there’s much
consistency with respect to measurements across benchmarks; Core Duo and Core2 Q6600 have many

more outliers, especially for SPEC 2006. Our technical report provides detailed performance information
— these plots are merely intended to indicate trends. Standard deviations decrease drastically with our

updated methods, but there is still room for improvement.

have similar outliers: the two AMD machines share out-

liers, as do the two Pentium 4 machines.

5.2 Inter­machine Results

Figure 4 shows results for each SPEC 2000 benchmark

(DBI values are shown but not incorporated into standard

deviation results). We include detailed plots for five rep-

resentative benchmarks to show individual machine contri-

butions to deviations. (Detailed plots for all benchmarks

are available in our technical report [25].) Our variation-

reduction methods help integer benchmarks more than float-

ing point. The Pentium III, Core Duo and Core 2 machines

often over-count instructions. Since they share the same

base design, this is probably due to architectural reasons.

The Athlon frequently is an outlier, often under-counting.

DBI results closely match the Pentium 4’s, likely because

the Pentium 4 counter apparently ignores many OS effects

that other machines cannot.

Figure 5 shows inter-machine results for each SPEC

2006 benchmark. These results have much higher variation

than the SPEC 2000 results. Machines with the smallest

memories (Pentium 3, Athlon, and Core Duo) behave sim-

ilarly, possibly due to excessive OS paging activity. The

Valgrind DBI tool behaves poorly compared to the others,

often overcounting by at least a million instructions.

6 Conclusions and Future Work

Even though originally included in processor architec-

tures for hardware debugging purposes, when used cor-

rectly, performance counters can be used productively for



256.bzip2.graphic

256.bzip2.program

256.bzip2.source

186.crafty.default

252.eon.cook

252.eon.kajiya

252.eon.ru
shmeier

254.gap.default

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

181.mcf.default

197.parser.d
efault

253.perlbmk.535

253.perlbmk.704

253.perlbmk.957

253.perlbmk.850

253.perlbmk.diffm
ail

253.perlbmk.makerand

253.perlbmk.perfe
ct

300.tw
olf.d

efault

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

175.vpr.p
lace

175.vpr.ro
ute

0
100
10K
1M

100M
10B

-100
-10K
-1M

-100M
-10BD

if
fe

re
n

c
e

 f
ro

m
 M

e
a

n
 (

lo
g

)
D

if
fe

re
n

c
e

 f
ro

m
 M

e
a

n
 (

lo
g

) Original Standard Deviation
Adjusted Standard Deviation

188.ammp.default

173.applu.default

301.apsi.default

179.art.1
10

179.art.4
70

183.equake.default

187.facerec.default

191.fm
a3d.default

178.galgel.default

189.lucas.default

177.mesa.default

172.mgrid.default

200.sixtra
ck.default

171.swim.default

168.wupwise.default

0
100
10K
1M

100M
10B

-100
-10K
-1M

-100M
-10BD

if
fe

re
n

c
e

 f
ro

m
 M

e
a

n
 (

lo
g

)
D

if
fe

re
n

c
e

 f
ro

m
 M

e
a

n
 (

lo
g

)

256.bzip2.graphic

252.eon.cook

197.parser.d
efault

187.facerec.default

177.mesa.default

0
100
10K
1M

100M
10B

-100
-10K
-1M

-100M
-10BD

if
fe

re
n
c
e
 f
ro

m
 M

e
a
n
 (

lo
g
)

D
if
fe

re
n
c
e
 f
ro

m
 M

e
a
n
 (

lo
g
)

6

6 6

6

6

2

2 2

2

23

3 3

3

3

4

4

4
4

4

D

D D

D

D

A

A

A

A

A

9

9 9

9

9C

C C

C

C

T

T T

T

T

P

P
P

P

P

Q

Q
Q

Q

Q

V

V
V

V

V

Original Standard Deviation
Adjusted Standard Deviation

6 Pentium Pro
2 Pentium II
3 Pentium III

4 Pentium 4
D Pentium D
A Athlon XP

9 Phenom 9500
C Core Duo
T Core2 Q6600

P Pin
Q Qemu
V Valgrind

Figure 4. Inter­machine results for SPEC CPU 2000. We choose five representative benchmarks and

show the individual machine differences contributing to the standard deviations. Often there is a
single outlier affecting results; the outlying machine is often different. DBI results are shown, but

not incorporated into standard deviations.



473.astar.B
igLakes

473.astar.ri
vers

401.bzip2.chicken

401.bzip2.combined

401.bzip2.html

401.bzip2.lib
erty

401.bzip2.program

401.bzip2.source

403.gcc.166

403.gcc.200

403.gcc.c-typeck

403.gcc.cp-decl

403.gcc.expr

403.gcc.expr2

403.gcc.g23

403.gcc.s04

403.gcc.scilab

445.gobmk.13x13

445.gobmk.nngs

445.gobmk.score2

445.gobmk.tre
vorc

445.gobmk.tre
vord

464.h264ref.fo
reman_baseline

464.h264ref.fo
reman_main

464.h264ref.sss_main

456.hmmer.n
ph3

456.hmmer.re
tro

462.lib
quantum.default

429.mcf.default

471.omnetpp.default

400.perlbench.checkspam

400.perlbench.diffm
ail

400.perlbench.splitm
ail

458.sjeng.default

483.xalancbmk.default

0
100
10K
1M

100M
10B

-100
-10K
-1M

-100M
-10BD

if
fe

re
n
c
e
 f
ro

m
 M

e
a
n
 (

lo
g
)

D
if
fe

re
n
c
e
 f
ro

m
 M

e
a
n
 (

lo
g
) Original Standard Deviation

Adjusted Standard Deviation

410.bwaves.default

436.cactusADM.default

454.calculix.default

447.dealII.d
efault

416.gamess.cytosine

416.gamess.h2ocu2

416.gamess.tria
zolium

459.GemsFDTD.default

435.gromacs.default

470.lbm.default

437.leslie3d.default

433.milc.default

444.namd.default

453.povray.default

450.soplex.pds-50

450.soplex.re
f

482.sphinx3.default

465.tonto.default

481.wrf.d
efault

434.zeusmp.default

0
100
10K
1M

100M
10B

-100
-10K
-1M

-100M
-10BD

if
fe

re
n

c
e

 f
ro

m
 M

e
a

n
 (

lo
g

)
D

if
fe

re
n

c
e

 f
ro

m
 M

e
a

n
 (

lo
g

)

401.bzip2.lib
erty

403.gcc.scilab

456.hmmer.re
tro

483.xalancbmk.default

482.sphinx3.default

0
100
10K
1M

100M
10B

-100
-10K
-1M

-100M
-10BD

if
fe

re
n
c
e
 f
ro

m
 M

e
a
n
 (

lo
g
)

D
if
fe

re
n
c
e
 f
ro

m
 M

e
a
n
 (

lo
g
)

3

3 3

3

3

4 4
4

4 4

D

D

D
D

D

A

A

A
A

A

9

9

9
9

9
C

C

C

C

C

T

T

T
T

T

P P P
P

P

Q Q Q
Q

Q

V

V

V

V
V

Original Standard Deviation
Adjusted Standard Deviation 3 Pentium III

4 Pentium 4
D Pentium D
A Athlon XP

9 Phenom 9500
C Core Duo
T Core2 Q6600

P Pin
Q Qemu
V Valgrind

Figure 5. Inter­machine results for SPEC CPU 2006. We choose five representative benchmarks and
show the individual machine differences contributing to the standard deviations. Often there is a

single outlier affecting results; the outlying machine is often different. DBI results are shown, but

not incorporated into the standard deviations.



many types of research (as well as application performance

debugging). We have shown that with some simple method-

ology changes, the x86 retired instruction performance

counters can be made to have a coefficient of variation of

less than 0.002%. This means that architecture research us-

ing this particular counter can reasonably be expected to

reflect actual hardware behavior. We also show that our

results are consistent across multiple generations of pro-

cessors. This indicates that older publications using these

counts can be compared to more recent work.

Due to time constraints, several unexplained variations

in the data still need to be explored in more detail. We have

studied many of the larger outliers, but several smaller, yet

significant, variations await explanation. Here we examine

only SPEC; other workloads, especially those with signifi-

cant I/O, will potentially have different behaviors. We also

only look at the retired instruction counter; processors have

many other useful counters, all with their own sets of vari-

ations. Our work is a starting point for single-core perfor-

mance counter analysis. Much future work remains involv-

ing modern multi-core workloads.

Acknowledgments

We thank Brad Chen and Kenneth Hoste for their invalu-

able help in shaping this article. This work is supported in

part by NSF CCF Award 0702616 and NSF ST-HEC Award

0444413.

References

[1] Advanced Micro Devices. AMD Athlon Processor Model 6 Revision

Guide, 2003.

[2] T. Austin. Simplescalar 4.0 release note.

http://www.simplescalar.com/.

[3] F. Bellard. QEMU, a fast and portable dynamic translator. In Proc.

2005 USENIX Annual Technical Conference, FREENIX Track, pages

41–46, Apr. 2005.

[4] B. Black, A. Huang, M. Lipasti, and J. Shen. Can trace-driven sim-

ulators accurately predict superscalar performance? In Proc. IEEE

International Conference on Computer Design, pages 478–485, Oct.

1996.

[5] G. Contreras, M. Martonosi, J. Peng, R. Ju, and G. Lueh. XTREM: A

power simulator for the intel XScale core. In Proc. ACM Conference

on Languages, Compilers, and Tools for Embedded Systems, pages

115–125, 2004.

[6] L. DeRose. The hardware performance monitor toolkit. In Proc. 7th

International Euro-Par Conference, pages 122–132, Aug. 2001.

[7] R. Desikan, D. Burger, and S. Keckler. Measuring experimental error

in multiprocessor simulation. In Proc. 28th IEEE/ACM International

Symposium on Computer Architecture, pages 266–277, June 2001.

[8] S. Eranian. Perfmon2: a flexible performance monitoring interface

for Linux. In Proc. 2006 Ottawa Linux Symposium, pages 269–288,

July 2006.

[9] G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0:

Faster and more flexible program analysis. In Workshop on Mod-

eling, Benchmarking and Simulation, June 2005.

[10] M. Hauswirth, A. Diwan, P. F. Sweeney, and M. C. Mozer. Automat-

ing vertical profiling. In Proc. 20th ACM Conference on Object-

Oriented Programming Systems, Languages and Applications, pages

281–296, 2005.

[11] W. Korn, P. J. Teller, and G. Castillo. Just how accurate are perfor-

mance counters? In 20th IEEE International Performance, Comput-

ing, and Communication Conference, pages 303–310, Apr. 2001.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. Reddi, and K. Hazelwood. Pin: Building customized

program analysis tools with dynamic instrumentation. In Proc. ACM

SIGPLAN Conference on Programming Language Design and Im-

plementation, pages 190–200, June 2005.

[13] W. Mathur and J. Cook. Improved estimation for software multi-

plexing of performance counting. In Proc. 13th IEEE International

Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, pages 23–34, Sept. 2005.

[14] M. Maxwell, P. Teller, L.Salayandia, and S. Moore. Accuracy of

performance monitoring hardware. In Proc. Los Alamos Computer

Science Institute Symposium, Oct. 2002.

[15] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. Sweeney. We have

it easy, but do we have it right? In NSF Next Generation Systems

Workshop, pages 1–5, Apr. 2008.

[16] T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan. Time

interpolation: So many metrics, so few registers. In Proc. IEEE/ACM

41st Annual International Symposium on Microarchitecture, 2007.

[17] N. Nethercote and J. Seward. Valgrind: A framework for heavy-

weight dynamic binary instrumentation. In Proc. ACM SIGPLAN

Conference on Programming Language Design and Implementation,

pages 89–100, June 2007.

[18] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and

A. Karunanidhi. Pinpointing representative portions of large Intel Ita-

nium programs with dynamic instrumentation. In Proc. IEEE/ACM

37th Annual International Symposium on Microarchitecture, pages

81–93, Dec. 2004.

[19] D. Penry, D. August, and M. Vachharajani. Rapid development of a

flexible validated processor model. In Proc. Workshop on Modeling,

Benchmarking, and Simulation, pages 21–30, June 2005.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automat-

ically characterizing large scale program behavior. In Proc. 10th

ACM Symposium on Architectural Support for Programming Lan-

guages and Operating Systems, pages 45–57, Oct. 2002.

[21] A. Srivastava and A. Eustace. ATOM: a system for building cus-

tomized program analysis tools. In Proc. ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, pages

196–205, June 1994.

[22] Standard Performance Evaluation Corporation. SPEC CPU bench-

mark suite. http://www.specbench.org/osg/cpu2000/, 2000.

[23] Standard Performance Evaluation Corporation. SPEC CPU bench-

mark suite. http://www.specbench.org/osg/cpu2006/, 2006.

[24] V. Weaver and S. McKee. Are cycle accurate simulations a waste of

time? In Proc. 7th Workshop on Duplicating, Deconstructing, and

Debunking, June 2008.

[25] V. Weaver and S. McKee. Can hardware performance counters be

trusted? Technical Report CSL-TR-2008-1051, Cornell University,

Aug. 2008.

[26] V. Weaver and S. McKee. Using dynamic binary instrumentation to

generate multi-platform simpoints: Methodology and accuracy. In

Proc. 3rd International Conference on High Performance Embedded

Architectures and Compilers, pages 305–319, Jan. 2008.


