
Are Cycle Accurate Simulations a Waste of Time?

Vincent M. Weaver and Sally A. McKee
Computer Systems Laboratory

Cornell University
{vince,sam}@csl.cornell.edu

Abstract

Cycle-accurate simulation methods are necessarily slow.
This slowness is only acceptable if the simulation results
can be shown to have smaller error than other, faster, meth-
ods of generating the same results.

We use the SESC simulator as a representative of cycle-
accurate simulation. We configure it to match an actual
SGI MIPS R12000 system as closely as possible. We run
the SPEC CPU 2000 benchmarks and compare simulated
results against actual hardware performance counters. We
find that for CPI SESC diverges from actual hardware by
24.6% for integer benchmarks and 67.6% for floating point.
We then use the Qemu DBI tool as the basis for a faster sim-
ulation environment. Qemu generates traces that are con-
sumed by individual simulation processes that run concur-
rently on a CMP system. We find that for CPI the results
diverge from actual hardware by -1.8% for integer bench-
marks and 26.3% for floating point. These Qemu results are
obtained an order of magnitude faster than those found with
SESC (and other popular simulators popular in academia,
many of which are much slower).

These results show that a re-evaluation of the tradeoffs
of cycle-accurate simulations in the field of computer ar-
chitecture research could have merit. Furthermore, using
multiple methods to validate a tool or to investigate a pro-
posed architecture is simplegood science.

1 Background

“Cycle-accurate” simulators are one of the prevailing
simulation tools in Computer Architecture research. Unfor-
tunately, the results generated by academic1 cycle-accurate
simulators can be misleading due to unknown amounts of
error. More importantly, similar results can be generated

1Heretofore, when we mention cycle-accurate simulations, we refer to
tools and results generated in academia. Industry researchers and devel-
opers have created much more accurate simulators, but sincetheir source
code is not generally available to academics, we will not discuss them here.

faster using dynamic binary instrumentation (DBI) based
simulation techniques.

There are a number of problems with cycle-accurate sim-
ulators, in general:

• Speed: Simulators are slow, often multiple orders of
magnitude slower than native execution. Many re-
searchers commonly use “reduced-execution” meth-
ods to compensate, yet these methods can compound
simulation error if not carefully applied. For instance,
Yi et al. [19] find that various reduced execution meth-
ods can add large errors—never less than 5%.

• Obscurity: The simulation tools are rarely used out-
side the specialized field of Computer Architecture re-
search. Since the simulators themselves are rarely used
for anything except running a limited set of bench-
marks, bugs can lurk in the code base for a long time,
and many are possibly never noticed at all.

• Code Forks: Since few people are using the simula-
tors at any given time, the code base quickly becomes
unmaintained and fragmented among the groups using
it. Bugs may be fixed at different times and at different
institutions. The source codes diverge so much that
when one paper claims it uses a particular simulator,
that statement may have little meaning, since the code
used differs so much from the mainline (so much so as
to be unrecognizable).

• Generalization: Simulators are often highly config-
urable, since the authors often want to create a tool
that can be used to model a multitude of different sit-
uations. The end result is that a single simulator can
model all architectures, but it may model them all in
an equally poor manner. Another problem is that the
more configurable a simulator, the easier it is to con-
figure it improperly, often in non-obvious ways.This
has been one of the biggest problems for these authors.

• Validation: Most simulators are not validated against
real hardware, and when they are, the results are rarely
within 10% error, even after extensive effort has been
taken to attempt to model a known architecture as

1



closely as possible [3, 10, 7]. There are exceptions, of
course, but the most commonly used academic tools
have diverged widely from any versions for which val-
idation was attempted.

• Documentation: Simulators are often poorly docu-
mented, both at a high level and at the source-code
level. This alone probably accounts for more errors
in simulation than any overt programming bugs. Re-
searchers simply do not have the information needed
to use them correctly.

• Obsolescence:Most simulators are already outdated
by the time they become mature enough to run useful
workloads. It is difficult to gain sufficient documen-
tation on modern processors to accurately implement
internals, so, instead, well understood but obsolete pro-
cessors are modeled.

• Tools: Simulators often require a special tool-chain to
build suitable executables. The difficulty of using out-
of-date toolchains (many need old versions of libraries
that are no longer available, for instance) necessitates
that researchers often use pre-compiled benchmarks
that are rarely updated. New advancements in com-
piler technology are thus lost, since the toolchain is
rarely complete enough to compile whole benchmark
suites. Often some of the more interesting benchmarks
are simply left out due to toolchain difficulties, This is
yet another source of error in simulations [5].

• Operating System: Many simulators cannot model
full operating systems, which can be problematic: the
OS can have a significant impact on full system simu-
lation. Cain et al. [4] find that removing the OS from
the simulation equation can have a greater impact on
results than ignoring effects of speculation.

These problems results in part from the lack of funding
for building and maintaining solid academic architectural
tools. One or two students cannot build and maintain a tool
anduse it for their doctoral research in a reasonable amount
of time, given today’s complicated architectures.

In short, to be blunt, using an invalidated or poorly docu-
mented simulator modeling a 10-year old processor by run-
ning only small portions of an 8-year old benchmark suite
that was compiled with a 10-year old compiler may not rep-
resent the best way to do cutting-edge research. Taking
this setup and scaling the configuration to match a hypo-
thetical processor only tangentially related to the original
design can compound the accuracy problem. Eventually it
becomes critical to know how big the potential error is; a
small average speedup of 5-10% (which is often sufficient
for publication reviewers) might, in reality, be dwarfed by
cumulative errors of the infrastructure2.

2We do not discuss issues involved with averages chosen to represent
simulation statistics, but see John Mashey’s writing online or the MoBS
2007 workshop proceedings for more information on that subject.

2 Methodology

Our original goal was to evaluate the suitability of the
SESC simulator for use by our group. We chose it because
other groups are also using it, it provides much flexibility,
it is an open-source tool (which we whole-heartedly sup-
port), it runs more quickly than many other simulators, and
it seemed the best available candidate to meet our needs. As
with any tool we use in our research, we attempt to validate
that tool ourselves as best we can before using it for exper-
imental studies. In this case, we run the same benchmarks
on real hardware, the SESC simulator, and a custom Qemu-
based DBI/trace-driven simulator, and then investigate the
relative results and merits of each.

2.1 Cycle-accurate Simulator

SESC [14] is a widely used cycle-accurate simulator.
SESC can simulate CMP systems, but for comparison pur-
poses, we only model a single-core system. The simulator
was originally built to model out-of-order MIPS processors,
and it runs MIPS binaries. It uses an elaborate configura-
tion file that can specify architectures very different than
the originating design.

As far as we know, SESC has never been validated in
a peer-reviewed manner. The documentation distributed
with the simulator includes a fileREADME.validation
showing that a few microbenchmarks matched hardware
execution time within about 20% for R10000 and R4400
MIPS-based machines.

We configure SESC to match our reference platform as
closely as possible (with the help of the tool’s original au-
thor), which turns out to be difficult, despite our machine’s
being almost exactly the same as the simulator’s original de-
sign point. Major differences are that the R12000 has a uni-
fied 2-page, 64-entry software-controlled TLB (SESC ap-
parently only handles separate data and instruction TLBs),
and the R12000’s off-chip L2 cache with a way-predictor
(which can affect L2 cache latencies in a way not easily
modeled with SESC). The branch predictor in the R12000 is
deceptively non-trivial, and again it is not possible to model
exactly. (Many of the arcane architectural details are not
sufficiently documented for any simulator author to model
exactly without “inside” industrial information.)

We make a best attempt to configure SESC properly; un-
fortunately the configuration format is poorly documented.
Many necessary options are not described, the provided
sample configurations are not helpful, and even the related
source code is not well commented. In the end, after spend-
ing much time researching and crafting a configuration file,
the author of SESC found 40 errors in our configuration.
This does not bode well for configuration attempts by other
new users of the tool. A copy of our configuration file is

2



Processor 300MHz R12000
out-of-order, 4-issue
33 arch registers
64 physical registers

Memory Subsystem L1i: 32kB, 2-way, 64B
L1d: 32kB, 2-way, 32B
L2 : 2MB, 2-way, 128B
2GB SDRAM, 1.0GB/s

Branch Predictor 2048 entry 2-bit
TLB Unified 64-entry

Table 1. Configuration of SGI Octane2 ma-
chine used for comparison

available for download.
We use a default version of SESC, checked out from the

CVS server on 7 April 2008 and compiled with gcc version
4.2.4. We use the-k0x800000 -h0x23400000 -p2
command line options when running benchmarks.

2.2 Reference Hardware

The reference platform for our experiments is an SGI
Octane2 [17] with an R12000 MIPS processor [18, 12]. A
summary of key features is listed in Table 1. The machine
runs Linux 2.6.22 patched to provide Octane support. The
kernel has been modified to include the perfmon2 [9] per-
formance counter infrastructure.

The R12000 has a relatively unique feature in that the
processor’s branch prediction methods are configurable at
runtime. We wrote a custom kernel module that sets the
proper Branch Diagnostic Register bits (cp0 register 22)
to change the branch prediction method on the fly. The
processor defaults to a 2048-entry 2-bit saturating counter
dynamic prediction scheme. This can be changed to var-
ious static schemes: always taken, always not-taken, and
forward/taken-backward/not-taken. A global pattern his-
tory table can be enabled with a configurable number of bits,
and the Branch Target Address Cache (BTAC) and Branch
Return Cache (BRC) can be individually disabled.

We run various microbenchmarks to verify the perfor-
mance counters work properly, using thepfmon tool to col-
lect performance statistics. This tool enables performance
counting from a separate process, so the actual counting is
handled entirely by the OS kernel, inducing very little user-
space overheard. Counts are collected in aggregate for the
full program, with no sampling.

There has been concern about the accuracy of MIPS per-
formance counters: Korn, Teller, and Castillo [11] find up to
25% error with some counters on the R12000 and R10000
under SGI IRIX. We do not notice similar error; potentially,

the differences they see are due to their use of sim-outorder
as a reference, which has been found to have similar levels
of error by Desikan, Burger, Keckler and Austin [6, 7].

2.3 DBI-based Simulator

We use Qemu [1] to generate traces consumed by a set of
small independent simulators. Qemu uses dynamic retrans-
lation at the basic-block level to convert from one architec-
ture (in this case MIPS) to another (in this case x86). We
add code hooks to output needed trace data.

For cache simulation we use the Dinero IV [8] Cache
Simulator. Qemu passes trace info in the Dinero file for-
mat over a named-pipe to Dinero (which runs in a separate
process). To determine branch prediction information we
wrote a custom branch predictor (source available on our
website). This branch predictor runs in a separate process
and obtains the full instruction stream (both address and in-
struction value) from Qemu over a named-pipe. The predic-
tor decodes the MIPS instructions and determines which are
branches (taking special care to handle the “predict taken”
beql instructions properly). A branch is determined to be
taken or not by buffering an additional two instructions to
see if the address after the delay slot is PC+8.

Because each of our tools is a separate process, we can
take advantage of CMP and SMP systems in a way that most
cycle-accurate simulations cannot. Each process can live on
its own core, and running the branch predictor thread at the
same time as a cache thread adds negligible overhead on a
4-processor machine. The limiting factor while doing this
simulation is the cache simulator, not the dynamic transla-
tion and execution of the binary.

2.4 Benchmarks

To evaluate the various simulation methods, we use the
SPEC CPU 2000 [15] benchmarks. To enable compari-
son with past uses of the SESC simulator, we use the pre-
compiled versions of the benchmarks provided on the SESC
website. All three of our test platforms can run these bench-
marks unmodified.

Unfortunately the pre-compiled benchmarks have some
limitations. They are potentially not plain SPEC 2000 bi-
naries, even though the included documentation does not
mention this. Extraprintf() commands have been scat-
tered throughout the code (presumably for debugging pur-
poses or for controlling partial simulation experiments),and
some benchmarks have been modified for faster run times.
For an example, see Figure 1, which shows thatgzip—as
provided—only executes a small fraction of the full bench-
mark. In addition to the above problems, not all of the CPU
2000 benchmarks are included with the precompiled bina-
ries. For all experiments we run full reference input sets.

3



0 200 400 600 800

Instruction Interval (100M)

0.0

0.5

1.0

1.5

C
P

I

CPI at each 100M interval, 164.gzip, source input

stock SPEC2k 
MIPS R12k
300MHz
Avg CPI = 0.68

0.0

0.5

1.0

1.5

C
P

I

precompiled
MIPS R12k
300MHz
Avg CPI = 0.75

Figure 1. The precompiled SPEC 2000 benchmarks available fr om the SESC website potentially have
had modifications to reduce runtime. Above is a phase chart ga thered with hardware performance
counters showing the provided precompiled binary on the top and a binary compiled from original
SPEC sources by us with gcc on the bottom.

Method Fastest Slowest Average Slowdown
R12000 15s (gzip.log) 57m23s (swim) –
QEMU 13m52s (gzip.log) 30h03m47s (mgrid) 30x
SESC 7h21m29s (gcc.integrate) 10d14h25m28s (sixtrack) 420x

Table 2. Comparison of simulation times

4



3 Evaluation

We run as many SPEC 2000 benchmarks as possible on
the various platforms. Relative run times are shown in Ta-
ble 2. For the simulated results, we run on a large cluster of
4-processor 3.46GHz Pentium Ds, each with 4GB of RAM.

3.1 Absolute Results

Figure 2 shows actual and predicted L1 instruction cache
miss rates. The various tools calculate instruction cache
misses in different ways. For the performance counter re-
sults these graphs show decoded instructions versus instruc-
tion cache misses; for SESC and Qemu the graphs show
graduated instructions versus instruction cache misses. The
number of instruction cache misses in the floating point case
are so small that a small absolute error can cause a large
percentage error. Qemu has problems with theart bench-
marks, which we are investigating.

The reference system has write-back caches, which can
introduce accuracy issues with the performance counters.
Any memory accesses that happen while the benchmark
process is not running can change the values in the cache.
While all attempts are made to run the benchmarks on an
otherwise quiet system, other processes and even the oper-
ating system can evict cache lines on the real system in ways
that would not happen in the simulator. Similarly, values
stored into cache may not be accounted for in the perfor-
mance counters if the actual write-back to memory happens
when in a different processor’s context.

Qemu does not follow wrong-path execution, which can
account for some of the differences from actual hardware.
Likewise, SESC does not follow wrong-path execution,
since that code path is out of date, and is thus disabled in the
default configuration. Despite not executing these wrong-
path instructions, the results are not far off; this shows
that full cycle-accuracy is not always needed for generat-
ing good cache simulation results (and further supports the
conclusions of Cain et al. [4] regarding OS impact versus
speculation, at least in the case of Qemu).

Figure 3 shows L1 data cache miss rates, and Figure 4
shows L2 miss rates. The latter is important, since L2 cache
misses all traverse the processor bus of a multiprocessor
system. If the tool used records vastly incorrect numbers of
misses, multiprocessor simulations will generate erroneous
data that could influence a final design. SESC overall does
poorly predicting L2 miss rates for floating point bench-
marks, this could indicate that the floating point pipeline
sections of the configuration file need further adjustment.

The R12000 has a complicated off-chip cache. In or-
der to save pins, the machine incurs significant overhead in
changing the cache way. To mitigate this, it uses a cache
way-predictor, with a penalty on miss. None of the simula-

tors model this aspect of the system, which can potentially
become another source of modeling error.

Figure 5 shows branch predictor results. The R12000 can
predict and fetch past up to four branches, so a large amount
of speculation can be happening, and Qemu and SESC are
not capable of detecting this. There are also many hardware
subtleties to the R12000 branch predictor that neither Qemu
or SESC are modeling.

CPI results are shown in Figure 6. Qemu has no real
concept of time, so we approximate cycles with the formula:

cycles =
Ig∗L1ht

ifs
+ DL1aL1ht + L1mL1mt +

L2mL2mt + BrmBrmt

whereIg is graduated instructions,L1ht is L1 hit time
(2 cycles),ifs is the instruction fetch size (4),DL1a is L1
data accesses,L1m is L1 misses,L1mt is L1 miss time (14
cycles),L2m is L2 misses,L2mt is L2 miss time (120 cy-
cles),Brm is number of branch misses, andBrmt is branch
miss delay (2 cycles)

CPI is the metric most often used in validation, so it is
important to have these values match extra hardware. There
are a lot of architectural and software causes of cycle vari-
ation not modeled by either simulator. Most notably, no
Operating System effects are modeled at all.

3.2 Relative Results

Many researchers suggest that absolute results are not as
important with cycle-accurate simulation, but that relative
results are what matter most. As long as the trends are con-
sistent, then a simulator is still useful even if the simulator is
unvalidated and the error is large. To investigate this claim,
we configure our R12000 to operate in various branch pre-
dictor configurations (see Section 2.2 for more details). We
then plot relative differences in the metrics to see if consis-
tent trends are visible.

In Figure 7 we show the relative reduction in branch pre-
dictor miss rate by going from a dynamic 2-bit predictor
to an always-taken predictor. The figure shows that trends
are similar across all benchmarks, although the Qemu re-
sults are optimistic and the SESC results are pessimistic.
Figure 8 shows the same results, compared against a static
backward/taken forward/not-taken predictor.

Figure 9 shows how the always-taken predictor com-
pares against the 2-bit one with regards to L2 cache misses.
Qemu and SESC both do not model wrong-path execution,
so they have identical memory accesses even with differ-
ent branch predictors. Neither simulation method can pre-
dict the significant predictor-based changes in L2 behav-
ior observed on actual hardware. The results with the for-
ward/backward static predictor in Figure 10 are similar.

TLB behavior is shown in Figures 11 and 12. Results are
not shown for Qemu because a trace-based TLB simulator
was not available (and we didn’t have +time to write our

5



164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault
0.0

0.2

0.4

0.6

0.8

1.0
iC

ac
he

 M
is

s 
R

at
e 

(%
)

actual r12k Qemu/Dinero SESCL1 Instruction Cache Miss Rate

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0.00

0.02

0.04

iC
ac

he
 M

is
s 

R
at

e 
(%

)

actual r12k Qemu/Dinero SESCL1 Instruction Cache Miss Rate

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

Figure 2. Instruction cache miss rate with integer benchmar ks above and floating point below.

164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault
0

5

10

15

dC
ac

he
 M

is
s 

R
at

e 
(%

)

actual r12k Qemu/Dinero SESCL1 Data Cache Miss Rate
22.08 35.23 35.42

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0

10

20

30

40

50

dC
ac

he
 M

is
s 

R
at

e 
(%

)

actual r12k Qemu/Dinero SESCL1 Data Cache Miss Rate
51.63 51.73

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

Figure 3. L1 data cache miss rate with integer benchmarks abo ve and floating point below.

6



164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault
0.0

0.1

0.2
L2

 C
ac

he
 M

is
s 

R
at

e 
(%

)

actual r12k Qemu/Dinero SESCL2 Cache Miss Rate

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0.0

0.1

0.2

0.3

0.4

L2
 C

ac
he

 M
is

s 
R

at
e 

(%
)

actual r12k Qemu/Dinero SESCL2 Cache Miss Rate

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

Figure 4. L2 cache miss rate with integer above and floating po int below. None of the simulations
capture mcf’s behavior well. None of the simulation methods predicts th e art benchmarks well.

164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault
0

10

20

30

B
ra

nc
h 

M
is

s 
R

at
e 

(%
)

actual r12k Qemu/Dinero SESCBranch Miss Rate

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0

5

10

15

20

25

B
ra

nc
h 

M
is

s 
R

at
e 

(%
)

actual r12k Qemu/Dinero SESCBranch Miss Rate
27.57

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

Figure 5. Branch miss rate with integer above and floating poi nt below. The hardware can have up
to four outstanding branches; Qemu and SESC do not model wron g-path execution.

7



164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault
0

1

2

3

C
P

I

actual r12k Qemu/Dinero SESCCycles Per Instruction
6.28 5.81 9.02

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0

1

2

3

4

5

C
P

I

actual r12k Qemu/Dinero SESCCycles Per Instruction
5.29 5.23

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

S
E

S
C

 r
es

ul
ts

 n
ot

 a
va

ila
bl

e

Figure 6. CPI results with integer above and floating point be low.

164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0.0

0.2

0.4

0.6

0.8

1.0

B
ra

nc
h 

M
is

s 
R

at
io

actual r12k Qemu SESCRelative Branch Miss Rate 2bit/Taken

Figure 7. Always taken branch predictor normalized against dynamic 2-bit. The metric shown is
branch predictor miss rate.

164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0.0

0.2

0.4

0.6

0.8

1.0

B
ra

nc
h 

M
is

s 
R

at
io

actual r12k Qemu SESCRelative Branch Miss Rate 2bit/Static

Figure 8. Static branch predictor normalized against dynam ic 2-bit. The metric show is branch
predictor miss rate.

8



164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0.0

0.5

1.0

1.5
L2

 M
is

s 
R

at
io

actual r12k Qemu SESCRelative L2 Miss Rate 2bit/Taken

Figure 9. L2 cache miss rates with always-taken predictor, n ormalized against 2-bit results.

164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0.0

0.5

1.0

1.5

L2
 M

is
s 

R
at

io

actual r12k Qemu SESCRelative L2 Miss Rate 2bit/Static

Figure 10. L2 cache miss rates with static predictor, normal ized against 2-bit results.

164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0.0

0.5

1.0

1.5

T
LB

 R
at

io

actual r12k SESCRelative TLB 2bit/Taken

Figure 11. TLB misses with always taken normalized against 2 -bit.

164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0.0

0.5

1.0

1.5

T
LB

 R
at

io

actual r12k SESCRelative CPI 2bit/Static

Figure 12. TLB misses with static predictor normalized agai nst 2-bit.

9



own for the purposes of this article, alas). On actual hard-
ware, the branch predictor seems to have minimal impact
on TLB behavior. The MIPS TLB is managed in software,
usually with random replacement. This means it is easy for
results to diverge. Also, MIPS has a unified instruction/data
TLB, which SESC cannot model.

Figure 13 and Figure 14 show the relative results for
CPI. The Qemu results are close, despite the cycles count
being based solely on cache and branch predictor miss
rates.

4 Results

A summary of the absolute results are shown in Table 3.
The weighted average is taken of the various metrics across
all of the benchmarks that have finished running to com-
pletion on all three platforms. This is a total of 22 bench-
marks (19 integer, 3 floating point) which unfortunately is
only a portion of the 48 available SPEC CPU 2000 bench-
mark/input pairs.

We find that for the absolute results, SESC does not per-
form noticeably better than Qemu, despite taking an order
of magnitude longer to run.

Table 4 shows the percent error of the average relative
performance differences. The CPI results show that these
methods can be used to predict performance with an aver-
age error of 15% on CPI. The L2 Cache results show that
sometimes results can be deceptive; even though neither
QEMU or SESC is capable of executing wrong-path execu-
tion, their results that do absolutely nothing still fall within
10% error for the relative L2 cache miss rate.

5 Related Work

The most similar work to ours is that of Gibson et
al. [10]. They validate various MIPS simulators against
their R10000-based FLASH system. They find that even
their most carefully designed simulators have surprisingly
large errors. They, like we, call into question the value of
highly detailed simulators that are not validated against real
hardware.

Black et al. [2, 3] create a model of the PowerPC 604
processor and validate it using hardware performance coun-
ters. They use a small set of benchmarks for validation, and
try to reduce error. Interestingly, they find that fixing bugs
in the simulator can actually increase the error in simulation
because previous errors masked other bugs.

Desikan, Burger, Keckler and Austin [6, 7] validate
the sim-alpha cycle-accurate simulator. They find that the
generic sim-outorder simulator has upwards of 40% error,
and even a fine-tuned attempting to match an actual Alpha
machine still yields errors of around 15%. They run 22 of

the SPEC CPU 2000 benchmarks. (This work also sparked
much controversy in the architecture community.)

Vlaovic and Davidson develop TAXI [16], which uses a
Bochs-based front end to generate traces that are fed to a
cycle-accurate simulator modeling an earlier x86 machine.
They attempt to validate this method using performance
counters, and find their major limiting factor to be lack of
documentation for the architecture they are trying to model.

Patil et al.’s work [13] on validating Itanium SimPoints
uses a DBI tool (in this case Pin) and performance counters
to measure CPI, and then measures performance on ma-
chines with differing configurations. Their purpose is not
to validate any particular simulator, but rather to explorein
depth the SimPoint methodology.

6 Conclusions and Future Work

We have shown that in certain situations cycle-accurate
simulation is not inherently more accurate than using much
faster DBI-based methods. When engaging in computer ar-
chitecture research, if the metrics of interest are those that
can be produced using DBI-methods then it would be a
waste of time (possibly by orders of magnitude) to engage
in cycle-accurate simulation.

SESC can model multi-processor and multi-core sys-
tems, something that is not currently possible with DBI
based simulation. An important area of future work is to
see if it is feasible to extend the Qemu simulation method-
ology to enable multi-core simulations, and see if the speed
benefits still exist. A related issue with cycle-accurate simu-
lations if the lack of scalability when running the simulators
on multi-processor systems. Our Qemu-based infrastruc-
ture, by virtue of its modular nature, can take advantage of
multiple processors in a system in a way that a monolithic
simulator cannot.

More investigation needs to be done into Operating Sys-
tem effects in the simulated results. This requires a simula-
tion environment that can run a full operating system, which
Qemu can do but SESC cannot.

Our results are for commonly used metrics; there will al-
ways be a number of low-level metrics that only detailed
cycle-accurate simulation can provide. Often investigat-
ing these metrics properly require intrusive changes to the
cycle-accurate simulator. In the end it might be better to in-
stead write a standalone micro-simulator of just the piece of
micro-architecture being investigated. Future work would
be to explore the feasibility of using DBI to run these micro-
simulators, and to determine if a full cycle-accurate interac-
tion is needed in these situations.

Our relative results show predicted machine perfor-
mance, but only for changes in branch predictor. It is possi-
ble these results do not hold for other kinds of architectural
changes. It would be informative to vary the architecture in

10



164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0.0

0.5

1.0

C
P

I R
at

io
actual r12k Qemu SESCRelative CPI 2bit/Taken

Figure 13. CPI with always taken normalized against 2-bit.

164.gzip.graphic

164.gzip.log

164.gzip.program

164.gzip.ra
ndom

164.gzip.source

175.vpr.p
lace

175.vpr.ro
ute

176.gcc.166

176.gcc.200

176.gcc.expr

176.gcc.integrate

176.gcc.scilab

181.mcf.default

186.crafty.default

197.parser.d
efault

254.gap.default

255.vorte
x.1

255.vorte
x.2

255.vorte
x.3

256.bzip2.graphic

256.bzip2.program

256.bzip2.source

300.tw
olf.d

efault

168.wupwise.default

171.swim.default

172.mgrid.default

173.applu.default

177.mesa.default

179.art.1
10

179.art.4
70

183.equake.default

188.ammp.default

200.sixtra
ck.default

301.apsi.default
0.0

0.5

1.0

C
P

I R
at

io

actual r12k Qemu SESCRelative CPI 2bit/Static

Figure 14. CPI with static predictor normalized against 2-b it.

Metric
Bench R12000 Qemu SESC
Type Weighted Weighted % Weighted %

Average Average Error Average Error

L1I$ Miss Rate
Int 0.191% 0.234% 22.5% 0.193% 0.9%
FP 0.004% 0.000% -91.4% 0.004% -11.3%

L1D$ Miss Rate
Int 3.967% 5.764% 45.3% 4.898% 23.5%
FP 20.557% 21.233% 3.3% 30.928% 50.5%

L2$ Miss Rate
Int 0.080% 0.061% -23.9% 0.062% -22.0%
FP 0.194% 0.126% -34.9% 0.169% -12.6%

BrPred Miss Rate
Int 17.3% 17.3% 0.2% 20.0% 15.9%
FP 3.5% 8.4% 144.2% 3.7% 6.9%

CPI
Int 1.25 1.23 -1.8% 1.56 24.6%
FP 2.71 3.42 26.3% 4.54 67.6%

Table 3. Summary of results. The weighted average is across a ll of the SPEC 2000 benchmarks which
ran to completion on all three platforms: 19 integer and 3 floa ting point (this is unfortunately only a
fraction of the 48 available benchmark/input combinations ).

11



Metric
Brpred Qemu SESC
Type % %

Error Error

BrPred Miss Rate
Taken 71.8% -34.1%
Static -13.6% -50.2%

L2$ Miss Rate
Taken 8.8% 9.2%
Static 9.6% 9.9%

CPI
Taken 13.7% -7.5%
Static 0.3% -13.2%

Table 4. Summary of relative results. The relative results c ompare the relative results when moving
from 2-bit branch predictor to either taken or static. The er ror shown is the relative error between the
relative average means of all benchmarks on actual hardware versus the predicted relative average
means of the simulated results. The results represent the 22 of the SPEC CPU 2000 benchmarks
which ran to completion on all three platforms.

other ways and see how the results change, though validat-
ing this is difficult because it requires actual hardware with
the desired architectural parameters.

Overall, we find that simulators are complicated tools
that must be used with caution. Despite the availability of
faster methods of obtaining results, cycle-accurate simula-
tors remain indispensable as tools in computer architecture
research. We hope we have raised awareness of the inherent
benefits and limitations in the use of these tools.

References

[1] F. Bellard. QEMU, a fast and portable dynamic translator. In Proc.
2005 USENIX Annual Technical Conference, FREENIX Track, pages
41–46, Apr. 2005.

[2] B. Black, A. Huang, M. Lipasti, and J. Shen. Can trace-driven sim-
ulators accurately predict superscalar performance? InProc. IEEE
International Conference on Computer Design, pages 478–485, Oct.
1996.

[3] B. Black and J. P. Shen. Calibration of microprocessor performance
models.IEEE Computer, 31(5):59–65, May 1998.

[4] H. Cain, K. Lepak, B. Schwartz, and M. Lipasti. Precise and accu-
rate processor simulation. InWorkshop on Computer Architecture
Evaluation Using Commercial Workloads, pages 13–22, Feb. 2002.

[5] D. Citron. MisSPECulation: Partial and misleading use of SPEC
CPU2000 in computer architecture conferences. InProc. 30th
IEEE/ACM International Symposium on Computer Architecture,
pages 52–62, June 2003.

[6] R. Desikan, D. Burger, and S. Keckler. Measuring experimental error
in multiprocessor simulation. InProc. 28th IEEE/ACM International
Symposium on Computer Architecture, pages 266–277, June 2001.

[7] R. Desikan, D. Burger, S. Keckler, and T. Austin. Sim-alpha: a
validated, execution-driven Alpha 21264 simulator. Technical Re-
port TR-01-23, Department of Computer Sciences, The University
of Texas at Austin, 2001.

[8] J. Edler and M. D. Hill. Dinero IV trace-driven uniprocessor cache
simulator. http://www.cs.wisc.edu/ markhill/DineroIV,
2003.

[9] S. Eranian. Perfmon2: a flexible performance monitoringinterface
for Linux. In Proc. of the 2006 Ottawa Linux Symposium, pages
269–288, July 2006.

[10] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and
M. Heinrich. FLASH vs. (simulated) FLASH: Closing the simu-
lation loop. InProc. 9th ACM Symposium on Architectural Support
for Programming Languages and Operating Systems, pages 49–58,
Nov. 2000.

[11] W. Korn, P. J. Teller, and G. Castillo. Just how accurateare perfor-
mance counters? In20th IEEE International Performance, Comput-
ing, and Communication Conference, pages 303–310, Apr. 2001.

[12] NEC. VR10000 Series 64-/32-bit Microprocessor User’s Manual,
2001.

[13] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of large Intel Ita-
nium programs with dynamic instrumentation. InProc. IEEE/ACM
37th Annual International Symposium on Microarchitecture, pages
81–93, Dec. 2004.

[14] J. Renau. SESC.http://sesc.sourceforge.net/index.html,
2002.

[15] Standard Performance Evaluation Corporation. SPEC CPU bench-
mark suite.http://www.specbench.org/osg/cpu2000/, 2000.

[16] S. Vlaovic and E. Davidson. TAXI: Trace analysis for X86interpre-
tation. InProc. IEEE International Conference on Computer Design,
pages 508–514, Sept. 2002.

[17] I. Williams. An illustration of the benefits of the MIPS R12000 mi-
croprocessor and OCTANE system architecture. White Paper,SGI,
1999.

[18] K. C. Yeager. The Mips R12000 superscalar microprocessor. White
Paper, SGI, 2000.

[19] J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins. Charac-
terizing and comparing prevailing simulation techniques.In Proc.
11th IEEE Symposium on High Performance Computer Architecture,
pages 266–277, Feb. 2005.

12


