
Can Hardware Performance
Counters Produce Expected,

Deterministic Results?

Vince Weaver

Innovative Computing Lab, University of Tennessee

3rd Workshop on Functionality of Hardware Performance Monitoring

4 December 2010



Uses of Deterministic Events

• Simulator Validation

• Basic Block Vector (BBV) Analysis

• Feedback-Driven Optimization

• Deterministic Multi-threading

• Intrusion Analysis (via Replay)

• Performance Analysis

1



Ideal Deterministic Events

• Results are same run-to-run

• Event is frequent enough to be useful

• The expected count can easily be determined by code

inspection

• Available on many processors

2



Some Sources of Non-Determinism

• Operating System Interaction

• Program Layout / Address Space Randomization

• Measurement Overhead

• Multi-Core Interaction

• Hardware Implementation Details

3



Common Potentially Deterministic Events

• Retired Instructions

• Retired Branches

• Retired Loads and Stores

• Retired Multiplies and Divides

• Retired µops

• Retired Floating Point and SSE

• Other (fxch, cpuid, move operations, serializing

instructions, memory barriers, not-taken branches)

4



How Do We Find Sources of
Non-Determinism?

• Run existing large benchmarks and wade through large

instruction traces when things don’t match up?

• Use Dynamic Binary Instrumentation for comparison?

• Create many small assembly benchmarks to find inherent

overhead?

• Create a large assembly benchmark that attempts to

exercise all corners of the architecture?

5



Our Assembly Benchmark

• Exercises most Integer, X87, MMX and SSE instructions.

• Tests a wide variety of address modes and bit-widths.

• Executes over 200 million dynamic instructions.

• Available from our website

http://www.cs.utk.edu/∼vweaver1/projects/deterministic/

6



x86 64 Machines Investigated

Processor Kernel

Intel Atom 230 2.6.32 perf events

Intel Core2 T9900 2.6.32 perf events

Intel Nehalem X5570 2.6.31 perf events

Intel Nehalem-EX X7560 2.6.34 perf events

Intel Pentium D 2.6.28 perfmon2

AMD Phenom 9500 2.6.29 perfmon2

AMD Istanbul 8439 2.6.32 perf events

7



Contributors to Retired Instruction Count
on x86 64

• +1 extra for every Hardware Interrupt

• +1 extra for each page-fault

• +1 for first floating point instruction

• +1 extra for each floating point exception

• +1 on AMD on FP state save if exception bit set

• Instruction double counts on Pentium D with

INSTRUCTIONS RETIRED:NBOGUSNTAG

8



Retired Instruction Results
Difference from the expected 226,990,030

Machine Before Adjustment Adjusted

Core2 10,879±319 13±1

Atom 11,601±495 -41±12

Nehalem 11,409±3 8±2

Nehalem-EX 11,915±9 8±2

Pentium D
(inst retired)

2,610,571±8 561±3

Pentium D
(inst completed)

10,794±28 -50±5

Phenom 310,601±11 12±0

Istanbul 311,830±78 11±1

9



Contributors to Retired Branch Count on
x86 64

• +1 extra for every Hardware Interrupt

• +1 extra for each page-fault

• Core2 counts cpuid as a branch

10



Retired Branch Results

Difference from the expected 9,240,001

Machine Before Adjustment Adjusted

Core2 111,002±332 13±1

Atom 11,542±11 -43±4

Nehalem 11,409±4 8±1

Nehalem-EX 11,914±7 8±1

Pentium D 10,773±2 -56±5

Phenom 10,598±5 9±0

Istanbul 11,819±10 8±2

11



Contributors to Retired Load Count

• +1 extra for every Hardware Interrupt

• +1 extra for each page-fault

• +1 extra for FP/SSE exceptions

• Conditional moves always a load

• fbstp 80-bit FP BCD store also counts as load

• rep cmps counts as one (not two) loads

• Core2 counts various instructions twice

• Nehalem does not count padd

12



Pentium D Retired Loads

0 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096
Value in RCX for the rep movsb instruction

0

64

128

192

256

320

M
ea

su
re

d 
Lo

ad
s 

on
 P

en
tiu

m
 D

• Exposes microcoded loads (various counted double)

• Prefetches not included

• Page faults 5 loads, fldenv 7, frstor 23, fxrstor 26.

13



Retired Load Results

Difference from the expected 79,590,000

Machine Before Adjustment Adjusted

Core2 1,710,807±376 14±1

Atom — —

Nehalem -288,590±3 9±1

Nehalem-EX -288,086±7 8±3

Pentium D 2,402,843,955±12 3096±17

Phenom — —

Istanbul — —

14



Contributors to Retired Store Count on
x86 64

• +1 extra for every Hardware Interrupt

• +1 extra for each page-fault

• Nehalem counts cpuid, sfence mfence and clflush

• Pentium D exposes microcode behavior, as with loads

15



Retired Store Results

Difference from the expected 24,060,000

Machine Before Adjustment Adjusted

Core2 0±0 0±0

Atom — —

Nehalem 411,408±4 9±1

Nehalem-EX 411,914±6 9±1

Pentium D 163,402,604±185 11,776±175

Phenom — —

Istanbul — —

16



Retired Mul/Div

Unadjusted results

Machine Multiplies Divides

Core2 15,800,049± 68 5,800,016± 33

Atom 13,700,000± 0 7,000,000± 0

Nehalem 19,975,243± 1202 3,125,067± 48

Nehalem-EX 8,514,161±758,870 3,246,165±9,162

Pentium D n/a n/a

Phenom 69,242,930± 62,492 n/a

Istanbul 69,796,975±219,398 n/a

17



Retired Floating Point

Unadjusted results for various available FP events.

Machine FP1 FP2

Core2 72,600,239±187 39,099,997±0

Atom 38,800,000± 0 n/a

Nehalem 50,150,590±131 17,199,998±2

Nehalem-EX 50,155,704±562 17,199,998±2

Pentium D 100,400,310±413 n/a

Phenom 26,600,001± 0 112,700,001±0

Istanbul 26,600,001± 0 112,700,001±0

18



Retired SSE

Unadjusted results for SSE

Machine SSE

Core2 23,200,000± 0

Atom 88,299,597± 792

Nehalem 24,200,849± 154

Nehalem-EX 24,007,005± 197,401

Pentium D 54,639,963±4,943,158

Phenom 15,800,000± 0

Istanbul 15,800,000± 0

19



Retired µops

Machine µops

Core2 14,234,856,824± 8,926

Atom 12,651,163,475± 63,870

Nehalem 11,746,070,128±258,282

Nehalem-EX 11,746,732,506± 47,996

Pentium D 12,551,781,963± 4,601

Phenom 10,550,974,722± 36,819

Istanbul 10,551,189,637±139,283

20



Other Architectures

• ARM – Cannot select only userspace events

• ia64 – Loads, Stores, Instructions appear deterministic

• POWER – On Power6 Instructions appear deterministic,

Branches do not

• SPARC – on Niagara1, Instructions appear deterministic

21



Compensating

• Aggregate Counts – can be adjusted after the fact if

all relevant data can be captured in parallel.

Double-counted instructions are difficult.

• Overflow Mode – more difficult. One solution is to

stop early and slowly single-step.

22



DBI Tools

• Pin, Valgrind, Qemu, etc.

• All count rep prefixed string instructions individually,

requiring intervention

• Pin gives expected result on our assembly benchmark

• Inject own environment variables, disrupting glibc-using

programs

23



SPEC CPU 2000 Benchmarks

Retired Instruction Results on Core2

Bench Pin Results Adjusted Counter Results Difference

wupwise 360,553,377,202± 0 360,553,378,908± 175 1,706
gzip.graph 65,982,806,258± 0 65,985,332,330± 9 2,526,072
gcc.expr 7,253,042,753± 71 7,257,808,289± 43 4,765,536
eon.cook 59,410,255,668±144 59,432,884,285± 211 22,628,617
art.110 37,455,717,089± 0 37,684,112,743± 46 228,395,654

• Some run-to-run variation even in the DBI tool.

• Difference seems to be due to non-determinism in

applications, not the counters.

24



Conclusions / Future Work

• It may be possible to obtain deterministic counts on

x86 64, though it is more difficult than on other

architectures.

• More work needs to be done on understanding the

behavior of larger applications.

• We hope to use this work as a basis to understand the

behavior of Non-Deterministic events

25



Questions?

vweaver1@eecs.utk.edu

http://www.cs.utk.edu/∼vweaver1/projects/deterministic

26


