Can Hardware Performance
Counters Produce Expected,
Deterministic Results?

Vince Weaver
Innovative Computing Lab, University of Tennessee

3rd Workshop on Functionality of Hardware Performance Monitoring

4 December 2010

Uses of Deterministic Events

e Simulator Validation

e Basic Block Vector (BBV) Analysis
e Feedback-Driven Optimization

e Deterministic Multi-threading

e Intrusion Analysis (via Replay)

e Performance Analysis

cLd .
A S

Ildeal Deterministic Events

e Results are same run-to-run
e Event is frequent enough to be useful

e [he expected count can easily be determined by code
Inspection

e Available on many processors

Some Sources of Non-Determinism

e Operating System Interaction

e Program Layout / Address Space Randomization
e Measurement Overhead

e Multi-Core Interaction

e Hardware Implementation Details

Common Potentially Deterministic Events

Retired Instructions

Retired Branches

Retired Loads and Stores
Retired Multiplies and Divides
Retired pops

Retired Floating Point and SSE

Other (fxch, cpuid, move operations, serializing
instructions, memory barriers, not-taken branches)

ICL (‘ ‘ PAP|

How Do We Find Sources of
Non-Determinism?

e Run existing large benchmarks and wade through large
instruction traces when things don't match up?

e Use Dynamic Binary Instrumentation for comparison?

e Create many small assembly benchmarks to find inherent
overhead?

e Create a large assembly benchmark that attempts to
exercise all corners of the architecture?

ICL (‘ 5 PAP|

Our Assembly Benchmark

e Exercises most Integer

- X87, MMX and SSE instructions.

e Tests a wide variety of address modes and bit-widths.

e Executes over 200 mil

e Available from our we

lon dynamic instructions.

nsite

http: //www.cs.utk.edu/~vweaverl /projects/deterministic/

x86_64 Machines Investigated

Processor Kernel
ntel Atom 230 2.6.32 perf events
ntel Core2 T9900 2.6.32 perf events
ntel Nehalem X5570 2.6.31 perf events
ntel Nehalem-EX X7560 | 2.6.34 perf events
ntel Pentium D 2.6.28 perfmon?
AMD Phenom 9500 2.6.29 perfmon?
AMD Istanbul 8439 2.6.32 perf events
icLd] 7 PAPI

Contributors to Retired Instruction Count
on x86_64

e |1 extra for every Hardware Interrupt

e |1 extra for each page-fault

e +1 for first floating point instruction

e |1 extra for each floating point exception

e +1 on AMD on FP state save if exception bit set

e Instruction double counts on Pentium D with
INSTRUCTIONS_RETIRED :NBOGUSNTAG

ICL (‘ : PAP|

Retired Instruction Results
Difference from the expected 226,990,030

Machine Before Adjustment | Adjusted
Core2 10,879+319 1341
Atom 11,601+495 41412
Nehalem 11,40943 8+2
Nehalem-EX 11,91549 8+2
Pentium D 2,610,571+8 56143
(inst retired)

Pentium D 10,794428 -50+5
(inst completed)

Phenom 310,601+11 1240
Istanbul 311,830£78 11+1

Contributors to Retired Branch Count on

x86_04

e |1 extra for every Hardware Interrupt

e |1 extra for each page-fault

e Core2 counts cpuid as a branch

Retired Branch Results
Difference from the expected 9,240,001

Machine Before Adjustment | Adjusted
Core2 111,002::332 13+1
Atom 11.542+11 -43+44
Nehalem 11,409::4 3+1
Nehalem-EX 11,914::7 3+1
Pentium D 10,773+2 -56+45
Phenom 10,598::5 0+0
stanbul 11,819+10 312
ICL N 11 m

Contributors to Retired Load Count

e |1 extra for every Hardware Interrupt

e |+1 extra for each page-fault

e +1 extra for FP/SSE exceptions

e Conditional moves always a load

e fbstp 80-bit FP BCD store also counts as load
e rep cmps counts as one (not two) loads

e Core2 counts various instructions twice

e Nehalem does not count padd

ICL (‘ 12 PAPI

Pentium D Retired Loads

IIIIIIIIIIIIIIII

e Exposes microcoded loads (various counted double)
e Prefetches not included
e Page faults 5 loads, fldenv 7, frstor 23, fxrstor 26.

ICL (‘ 13 PAPI

Retired Load Results
Difference from the expected 79,590,000

Machine Before Adjustment | Adjusted
Core2 1,710,807::376 14+1
Atom — —
Nehalem -288,590::3 O+1
Nehalem-EX -238,086L7 8+3
Pentium D | 2,402,843,955+12 | 3096+17
Phenom — —
stanbul — —

cLd
A S

14

Contributors to Retired Store Count on

x86_04

e |1 extra for every Hardware Interrupt

e |1 extra for each page-fault
e Nehalem counts cpuid, sfence mfence and clflush

e Pentium D exposes microcode behavior, as with loads

Retired Store Results
Difference from the expected 24,060,000

Machine Before Adjustment | Adjusted
Core2 010 0+0
Atom — —
Nehalem 411,408::4 0+1
Nehalem-EX 411,914+6 0+1
Pentium D 163,402,604+185 11,776+175
Phenom — —
stanbul — —

cLd
A S

16

Retired Mul/Div

Unadjusted results

Machine Multiplies Divides
Core?2 15,800,049+ 638 | 5,800,016+ 33
Atom 13,700,000+ 0 || 7,000,000+ 0
Nehalem 19,975,243+ 1202 | 3,125,067+ 48
Nehalem-EX | 8,514,161+758,870 | 3,246,165+9,162
Pentium D n/a n/a
Phenom 69,242,930+ 62,492 n/a
stanbul 69,796,9754+219,398 n/a

cLd
A S

17

Retired Floating Point

Unadjusted results for various available FP events.

Machine FP1 FP2
Core2 72,0600,239+187 | 39,099,997+0
Atom 38,800,000+ O n/a
Nehalem 50,150,590+131 | 17,199,998+2
Nehalem-EX | 50,155,7044+562 | 17,199,098+2
Pentium D | 100,400,310+413 n/a
Phenom 20,600,001« 0112,700,001+0
stanbul 20,600,001+ 0112,700,001+0
cLd) 1 PAPI

Retired SSE

Unadjusted results for SSE

Machine SSE

Core2 23,200,000+ 0
Atom 33,299 597+ 792
Nehalem 24,200,849+ 154
Nehalem-EX || 24,007,005+ 197,401
Pentium D || 54,639,963+4,943,158
Phenom 15,800,000:: 0
stanbul 15,800,000+ 0

19

Retired nops

Machine [LOPS

Core2 14,234,856,824:: 8,926
Atom 12,651,163,475+ 63,870
Nehalem 11,746,070,128+258,282
Nehalem-EX | 11,746,732,506+ 47,996
Pentium D 12,551,781,963+ 4,601
Phenom 10,550,974,722+ 36,819
stanbul 10,551,189,6374+139,283

20

Other Architectures

e ARM — Cannot select only userspace events
e ab64 — Loads, Stores, Instructions appear deterministic

e POWER — On Power6 Instructions appear deterministic,
Branches do not

e SPARC — on Niagaral, Instructions appear deterministic

ICL (‘ 21 PAPI

Compensating

e Aggregate Counts — can be adjusted after the fact if
all relevant data can be captured in parallel.
Double-counted instructions are difficult.

e Overflow Mode — more difficult. One solution is to
stop early and slowly single-step.

DBI Tools

e Pin, Valgrind, Qemu, etc.

e All count rep prefixed string instructions individually,
requiring intervention

e Pin gives expected result on our assembly benchmark

e Inject own environment variables, disrupting glibc-using
programs

ICL (‘ 2 PAPI

SPEC CPU 2000 Benchmarks

Retired Instruction Results on Core2

Bench Pin Results Adjusted Counter Results Difference
wupwise 360,553,377,202+ 0 | 360,553,378,908+ 175 1,706
gzip.graph | 65,982,806,2584+ 0 | 65,985,332,330+ 9 2,526,072
gcc.expr 7,253,042,753+ 71 7,257,308,289+ 43 4,765,536
eon.cook 59,410,255,668+144 | 59,432,884,285+ 211 | 22,628,617
art.110 37,455,717,089+ 0O | 37,684,112,743+ 46 | 228,395,654

e Some run-to-run variation even in the DBI tool.

e Difference seems to be due to non-determinism in
applications, not the counters.

ICL (‘ 24 PAPI

Conclusions / Future Work

e It may be possible to obtain deterministic counts on
x86_64, though it is more difficult than on other
architectures.

e More work needs to be done on understanding the
behavior of larger applications.

e \We hope to use this work as a basis to understand the
behavior of Non-Deterministic events

ICL (‘ 25 PAPI

Questions?

vweaverl@eecs.utk.edu

http:/ /www.cs.utk.edu/~vweaverl /projects/deterministic

ICL C 26 m

