Non-Determinism and Overcount on
Modern Hardware Performance
Counter Implementations

Vince Weaver Dan Terpstra Shirley Moore
University of Maine University of Tennessee University of Texas at El Paso
vincent.weaver@maine.edu terpstra@icl.utk.edu svmoore@utep.edu

ISPASS 2013 — 23 April 2013

Hardware Performance Counters

e Low-level CPU counters measuring architectural events
e Not always documented well

e Never guaranteed by hardware engineers to be accurate
Tend to be a bit of an afterthought

e Can they be deterministic?

THE UNIVERSITY OF
LJMAINE 1 WA A4

Deterministic Program Example

Execute for exactly 10 million instructions on x86_64:

total is 2 + 1 + 49999972 + 3

.globl
_start:

Xor Jrcx

xor ‘rax

mov $499
loop:

dec Jrcx

jnz loop
exit:

xor %rdi

mov $60

syscall

THE UNIVERSITY OF

m MAINE

_start

,hrcx
, hrax
9997

, hrdi

, hrax

, hrcCcX

=

pad total to 10M
pad total to 10M
load counter

repeat 4999997 times

return value of O
put exit syscall number (60) in

rax

Results

perf stat -e instructions:u,r5301cb:u ./ten_million
Performance counter stats for ’./ten_million’:

10,000,006 instructions:u # 0.00 1insns per cycle
2 rb5301cb:u

10,000,004 instructions:u 0.00 1insns per cycle
1 r5301cb:u

10,000,008 instructions:u 0.00 1insns per cycle
3 rb5301cb:u

Results on lvyBridge too high by 2 + (2%r5301cb:u)?
Why?

THE UNIVERSITY OF

IMAINE ; RAAL

What Makes a Useful, Deterministic,
Event?

e [he result does not change run-to-run
(it is not speculative)

e [he expected value can be determined by code inspection

e The event occurs often in generic code

THE UNIVERSITY OF
CIMAINE : AA/

Is This Really a Problem?

e Have observed up to 2% error on real benchmarks, but
often it is much less.

e \Who needs Deterministic Events?

THE UNIVERSITY OF
CJIMAINE ; RAAL

Uses of Deterministic Events

e Simulator Validation — compare against hardware
e Validating Basic Block Vectors

e Feedback Directed Optimization — want precise sample
rate

e Hardware Checkpointing / Rollback, Intrusion Analysis
— need to replay asynchronous events at exact time

e Parallel Deterministic Execution — want execution (and
especially locks) to be deterministic

THE UNIVERSITY OF
LJMAINE : WA A4

External Sources of Non-Determinism

e Operating System Interaction
e Program Layout
e Measurement Overhead

e Multi-thread interactions

THE UNIVERSITY OF
CJIMAINE 7 RAAL

Custom Assembly Benchmark

e Hand-coded microbenchmark with over 200 million
dynamic instructions

e Exercises most integer, x87 floating point, MMX, and
SSE instructions (up to SSE3)

e Various types of memory accesses, operand sizes (8-bit
through 128-bit SSE) and addressing modes

e Code is looped many times to make anomalies stand out

e Compare against value from code inspection, also
validate with DBI Utils (Pin, Valgrind, Qemu)

MAINE 8 VA A/

x86_64 machines investigated

Processor Linux Kernel
Intel Atom 230 3.2 perf events
Intel Core2 X5355 2.6.36.2 perf events
Intel Nehalem X5570 2.6.38.6 perf events
Intel Nehalem-EX X7550 | 2.6.32-RHELG6 perf events
Intel Westmere-EX 8870 3.2 perf events
Intel SandyBridge-EP 2.6.32-RHELG6 perf events
Intel IvyBridge 15-3427U 3.2 perf events
Intel Pentium D 2.6.28 perfmon2
AMD Phenom 9500 2.6.29 perfmon?2
AMD Istanbul 8439 2.6.35 perf events
AMD Bobcat E-350 3.2 perf events
m MAINE 9

Event Types Investigated

e total retired Instructions

e retired branches (total and conditional)
e retired loads and stores

e retired floating point and SSE

e not speculative events (retired pops) or uncommon
events (move instructions, cpuid, serializing, barriers,
etc.)

THE UNIVERSITY OF
LJMAINE 10 WA A4

Intel Core2 Intel Nehalem / Westmere
Retired INSTRUCTIONS_RETIRED INSTRUCTIONS_RETIRED
Instructions (instructions:u) (instructions:u)
Retired BRANCH_INSTRUCTIONS_RETIRED BRANCH_INSTRUCTIONS_RETIRED
Branches (branches:u) (branches:u)
Retired Cond BR_CND_EXEC BR_INST_RETIRED:CONDITIONAL
Branches (r53008b:u) (r5301c4:u)
Retired INST_RETIRED:LOADS MEM_INST_RETIRED:LOADS
Loads (r5001c0:u) (r50010b:u)
Retired INST_RETIRED:STORES MEM_INST_RETIRED:STORES
Stores (r5002c0:u) (r50020b:u)
Multiplies MUL ARITH:MUL
(r510012:u) (r500214:u)
- DIV ARITH:DIV
Divides (r510013:u) (r1d40114:u)
FP_COMP_OPS_EXE FP_COMP_OPS_EXE:X87
FP (r500010:u) (r500110:)
SIMD_INSTR_RETIRED FP_COMP_OPS_EXE:SSE_FP
>SE (r5000ce:u) (r500410:u)
Retired UOPS_RETIRED UOPS_RETIRED:ANY
Uops (r500fc2:u) (r5001c2:u)
Hardware Interrupts L st L
(r5000c8:u) (r50011d:u)
THE UNIVERSITY OF
mj MAINE 11 VA A/

Results

Nehalem SandyBridge- Phenom
Atom Core2 Nehalem- | Westmere-EX EP Pentium D Istanbul
EX IvyBridge Bobcat
Total
Instructions hpEF hpEF hpEF hpEF hpEF hpEFD hpEFD
Total
Branches hp hpD hp hp hp hp hp
Conditional || _ p D DETRM | DETRM | -
Branches
Loads - hpD hpM hp u hpU -
Stores - DETRM hpD hpD U hpU -
Sources of nondeterminism: h Hardware Interrupts
P Page Faults
Sources of overcount: E | x87/SSE exceptions
F OS Lazy FP handling
D Instructions Overcounted
M Instructions Undercounted
U Counts micro-ops
Missing Results: - Event not available
! Test not run

THE UNIVERSITY OF

ITﬂ MAINE 12 VA A/

Sources of Non-Determinism

e Hardware interrupts — most events increment an extra
time for every hardware interrupt (most common is
periodic timer)

e Page faults — first time memory page accessed, extra
Instruction

THE UNIVERSITY OF
[IMAINE 1 RAA

Overcount

e In addition to non-determinism, many events suffer from

over (or under) count where an instruction triggers
multiple times

e Overcount /s deterministic, but cannot be predicted in
advance unless you know exact dynamic instruction mix

THE UNIVERSITY OF
[IMAINE 1 RAA

Sources of Overcount Found on Most
Events

e x37 top-of-stack pointer overflows
e Floating point unit used first time

e rep-prefixed string instructions count as single
instruction (DBI tools count each, Pin behavior change)

THE UNIVERSITY OF
LJMAINE 19 WA A4

Overcount in Total Retired Instructions

e AMD — fninit, fnsave, fnclex overcount when x87
exception flags set

e Pentium D — two different events
INSTRUCTIONS_COMPLETED : NBOGUS
INSTRUCTIONS_RETIRED :NBOGUSNTAG
Latter is deterministic (except when interrupt rep string)
but has overcount, specifically fldcw which can cause
2% error on some SPEC2k benchmarks.

THE UNIVERSITY OF
LJMAINE 16 WA A4

Overcount in Retired Branches

e AMD — Linux kernel / perf_event issue: wrong event
definition until Linux 2.6.35

e Core2 — cpuid instruction counts as a branch

THE UNIVERSITY OF
CJIMAINE 1 RAAL

Overcount in Retired Conditional Branches

e Nehalem — overcounts for may instructions that start
with opcode 0f (cond branches but also some MMX and

SSE)

THE UNIVERSITY OF
[IMAINE 1 RAA

Overcount in Retired Loads

e Core2 — leave counts twice.
fstenv, fxsave, fsave count as loads.

maskmovqg, maskmovdqu, movups, movupd, movdqu
count even when a store to memory.

e Nehalem — paddb, paddw, paddd under count

e Pentium D, SandyBridge, IvyBridge — measure pops

THE UNIVERSITY OF
LJMAINE 19 WA A4

Complex Pentium D Behavior

192

128

()]
g
|

Measured Loads on Pentium D

O | | | | | | | |
0 256 512 768 1024 1280 1536 1792 2048
Value in RCX for the rep movsb instruction

THE UNIVERSITY OF
MAINE 20
. 4

Overcount in Retired Stores

e Nehalem, Westmere - cpuid, sfence, mfence,
clflush all count as stores

e SandyBridge, IvyBridge — measure pops

THE UNIVERSITY OF
[IMAINE 2 RAA

Summary

Only two known x86_64 events are deterministic with no
overcount:

e INST_RETIRED:STORES on Core2

e BR_INST_RETIRED:CONDITIONAL on Westmere,
SandyBridge and lvyBridge

THE UNIVERSITY OF
[IMAINE 2 RAA

Compensating for Non-Determinism

Is it possible to compensate for non-determinism?

e For total aggregate counts, can subtract off interrupt
counts (if a HW Interrupt event available)

e Sampling and Fast-forwarding a bit trickier.
Can use ReVirt methodology: set counter to overflow
early by a safe amount, compensate, then single-step to
get exact

THE UNIVERSITY OF
LJMAINE 23 WA A4

Compensating for Overcount

Is it possible to compensate for non-determinism?

e Difficult for aggregate counts; you need to know the
exact Instruction mix

e FastForward is easier, as if you are trying to get to the
same place you will have traversed the same instruction
mix and have the same overcounts

THE UNIVERSITY OF
LJMAINE 24 WA A4

Non-x86_64 Architectures

e ARM — can't measure userspace only on Cortex A8/A9

e 964 — STORES_RETIRED, LOADS_RETIRED, and
TA64_INST_RETIRED appear deterministic

e POWERG — instructions:u deterministic, branches:u
has overcount

e SPARC Niagara T-1 — INSTR_CNT deterministic

THE UNIVERSITY OF
LJMAINE 25 WA A4

Full-sized Benchmarks

(SPEC CPU 2000)

Benchmark Pin Results Counter Results Difference
164.gzip.graphic 9,220,255,442+ /-0 9,220,318,816+/-1 63,374
171.swim 18,657,590,092+ /-0 18,657,604,499+ /-0 14,407
175.vpr.place 10,506,996,023+ /-0 10,507,367,334+ /-1 371,311
175.vpr.route 8,498,211,242+ /-0 8,498,625,210+ /-1 413,968
176.gcc.200 10,809,876,957+ /-0 10,810,247,099+/-14 370,142
177.mesa 35,256,814,647+ /-0 35,256,814,675+ /-0 28
178.galgel 25,736,467,292+ /-0 25,736,468,525+ /-0 1,233
179.art.110 3,467,916,650+ /-0 3,467,916,650+ /-0 0
179.art.470 3,792,351,365+/-0 3,792,351,365+ /-0 0
186.crafty 14,715,329,050+ /-0 14,715,329,550+ /-0 500
187.facerec 17,108,726,507+ /-0 17,175,891,130+/-6 67,164,623
188.ammp 31,435,756,072+ /-0 31,435,756,072+ /-0 0
197.parser 32,254,247,249+ /-0 32,254,090,688+ /-0 -156,561
200.sixtrack 24,831,293,048+ /-0 24,831,447,915+ /-1 154,867
252.eon.cook 9,168,538,965+/-10 9,168,538,925+ /-21 -40
253.perlbmk.957 853,729,475+ /-0 853,824,516+ /-0 05,041
253.perlbmk.diffmail 5,192,919,5647+ /-2 5,192,873,218+ /-0 -46,329
253.perlbmk.makerand 188,774,998+ /-2 188,774,884+ /-1 -114
253.perlbmk.perfect 3,498,063,997+ /-2 3,498,435,094+ /-0 371,097
254 gap 25,380,689,015+ /-0 25,380,688,751+ /-0 -264

THE UNIVERSITY OF

JMAINE

v

26

Future Work

e Test more extensively on other architectures
e Auto-generate tests
e Work with chip vendors

e Look at more events and options (Fixed Counter 2)

THE UNIVERSITY OF
CJIMAINE o7 RAAL

Questions?

vincent.weaverOmaine.edu

All code and data is available

http://www.eece.maine.edu/~vweaver/projects/deterministic

git://github.com/deater/deterministic.git

THE UNIVERSITY OF

UﬂhdAlbﬂi 28 VA A/

