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Hardware Performance Counters

e Low-level CPU counters measuring architectural events
e Not always documented well

e Never guaranteed by hardware engineers to be accurate
Tend to be a bit of an afterthought

e Can they be deterministic?
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Deterministic Program Example

Execute for exactly 10 million instructions on x86_64:

# total is 2 + 1 + 49999972 + 3

.globl
_start:

Xor Jrcx

xor ‘rax

mov $499
loop:

dec Jrcx

jnz loop
exit:

xor %rdi

mov $60

syscall
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Results

perf stat -e instructions:u,r5301cb:u ./ten_million
Performance counter stats for ’./ten_million’:

10,000,006 instructions:u # 0.00 1insns per cycle
2 rb5301cb:u

10,000,004 instructions:u 0.00 1insns per cycle
1 r5301cb:u

10,000,008 instructions:u 0.00 1insns per cycle
3 rb5301cb:u

Results on lvyBridge too high by 2 + (2%r5301cb:u)?
Why?
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What Makes a Useful, Deterministic,
Event?

e [he result does not change run-to-run
(it is not speculative)

e [ he expected value can be determined by code inspection

e The event occurs often in generic code
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Is This Really a Problem?

e Have observed up to 2% error on real benchmarks, but
often it is much less.

e \Who needs Deterministic Events?
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Uses of Deterministic Events

e Simulator Validation — compare against hardware
e Validating Basic Block Vectors

e Feedback Directed Optimization — want precise sample
rate

e Hardware Checkpointing / Rollback, Intrusion Analysis
— need to replay asynchronous events at exact time

e Parallel Deterministic Execution — want execution (and
especially locks) to be deterministic
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External Sources of Non-Determinism

e Operating System Interaction
e Program Layout
e Measurement Overhead

e Multi-thread interactions
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Custom Assembly Benchmark

e Hand-coded microbenchmark with over 200 million
dynamic instructions

e Exercises most integer, x87 floating point, MMX, and
SSE instructions (up to SSE3)

e Various types of memory accesses, operand sizes (8-bit
through 128-bit SSE) and addressing modes

e Code is looped many times to make anomalies stand out

e Compare against value from code inspection, also
validate with DBI Utils (Pin, Valgrind, Qemu)
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x86_64 machines investigated

Processor Linux Kernel
Intel Atom 230 3.2 perf events
Intel Core2 X5355 2.6.36.2  perf events
Intel Nehalem X5570 2.6.38.6  perf events
Intel Nehalem-EX X7550 | 2.6.32-RHELG6 perf events
Intel Westmere-EX 8870 3.2 perf events
Intel SandyBridge-EP 2.6.32-RHELG6 perf events
Intel IvyBridge 15-3427U 3.2 perf events
Intel Pentium D 2.6.28 perfmon2
AMD Phenom 9500 2.6.29 perfmon?2
AMD Istanbul 8439 2.6.35 perf events
AMD Bobcat E-350 3.2 perf events
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Event Types Investigated

e total retired Instructions

e retired branches (total and conditional)
e retired loads and stores

e retired floating point and SSE

e not speculative events (retired pops) or uncommon
events (move instructions, cpuid, serializing, barriers,
etc.)
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Intel Core2 Intel Nehalem / Westmere
Retired INSTRUCTIONS_RETIRED INSTRUCTIONS_RETIRED
Instructions (instructions:u) (instructions:u)
Retired BRANCH_INSTRUCTIONS_RETIRED BRANCH_INSTRUCTIONS_RETIRED
Branches (branches:u) (branches:u)
Retired Cond BR_CND_EXEC BR_INST_RETIRED:CONDITIONAL
Branches (r53008b:u) (r5301c4:u)
Retired INST_RETIRED:LOADS MEM_INST_RETIRED:LOADS
Loads (r5001c0:u) (r50010b:u)
Retired INST_RETIRED:STORES MEM_INST_RETIRED:STORES
Stores (r5002c0:u) (r50020b:u)
Multiplies MUL ARITH:MUL
(r510012:u) (r500214:u)
- DIV ARITH:DIV
Divides (r510013:u) (r1d40114:u)
FP_COMP_OPS_EXE FP_COMP_OPS_EXE:X87
FP (r500010:u) (r500110:)
SIMD_INSTR_RETIRED FP_COMP_OPS_EXE:SSE_FP
>SE (r5000ce:u) (r500410:u)
Retired UOPS_RETIRED UOPS_RETIRED:ANY
Uops (r500fc2:u) (r5001c2:u)
Hardware Interrupts L st L
(r5000c8:u) (r50011d:u)
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Results

Nehalem SandyBridge- Phenom
Atom Core2 Nehalem- | Westmere-EX EP Pentium D Istanbul
EX IvyBridge Bobcat
Total
Instructions hpEF hpEF hpEF hpEF hpEF hpEFD hpEFD
Total
Branches hp hpD hp hp hp hp hp
Conditional || _ p D DETRM | DETRM | -
Branches
Loads - hpD hpM hp u hpU -
Stores - DETRM hpD hpD U hpU -
Sources of nondeterminism: h Hardware Interrupts
P Page Faults
Sources of overcount: E | x87/SSE exceptions
F OS Lazy FP handling
D Instructions Overcounted
M Instructions Undercounted
U Counts micro-ops
Missing Results: - Event not available
! Test not run
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Sources of Non-Determinism

e Hardware interrupts — most events increment an extra
time for every hardware interrupt (most common is
periodic timer)

e Page faults — first time memory page accessed, extra
Instruction
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Overcount

e In addition to non-determinism, many events suffer from

over (or under) count where an instruction triggers
multiple times

e Overcount /s deterministic, but cannot be predicted in
advance unless you know exact dynamic instruction mix
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Sources of Overcount Found on Most
Events

e x37 top-of-stack pointer overflows
e Floating point unit used first time

e rep-prefixed string instructions count as single
instruction (DBI tools count each, Pin behavior change)
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Overcount in Total Retired Instructions

e AMD — fninit, fnsave, fnclex overcount when x87
exception flags set

e Pentium D — two different events
INSTRUCTIONS_COMPLETED : NBOGUS
INSTRUCTIONS_RETIRED :NBOGUSNTAG
Latter is deterministic (except when interrupt rep string)
but has overcount, specifically fldcw which can cause
2% error on some SPEC2k benchmarks.
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Overcount in Retired Branches

e AMD — Linux kernel / perf_event issue: wrong event
definition until Linux 2.6.35

e Core2 — cpuid instruction counts as a branch
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Overcount in Retired Conditional Branches

e Nehalem — overcounts for may instructions that start
with opcode 0f (cond branches but also some MMX and

SSE)
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Overcount in Retired Loads

e Core2 — leave counts twice.
fstenv, fxsave, fsave count as loads.

maskmovqg, maskmovdqu, movups, movupd, movdqu
count even when a store to memory.

e Nehalem — paddb, paddw, paddd under count

e Pentium D, SandyBridge, IvyBridge — measure pops
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Complex Pentium D Behavior
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Value in RCX for the rep movsb instruction
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Overcount in Retired Stores

e Nehalem, Westmere - cpuid, sfence, mfence,
clflush all count as stores

e SandyBridge, IvyBridge — measure pops
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Summary

Only two known x86_64 events are deterministic with no
overcount:

e INST_RETIRED:STORES on Core2

e BR_INST_RETIRED:CONDITIONAL on Westmere,
SandyBridge and lvyBridge
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Compensating for Non-Determinism

Is it possible to compensate for non-determinism?

e For total aggregate counts, can subtract off interrupt
counts (if a HW Interrupt event available)

e Sampling and Fast-forwarding a bit trickier.
Can use ReVirt methodology: set counter to overflow
early by a safe amount, compensate, then single-step to
get exact
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Compensating for Overcount

Is it possible to compensate for non-determinism?

e Difficult for aggregate counts; you need to know the
exact Instruction mix

e FastForward is easier, as if you are trying to get to the
same place you will have traversed the same instruction
mix and have the same overcounts
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Non-x86_64 Architectures

e ARM — can't measure userspace only on Cortex A8/A9

e 964 — STORES_RETIRED, LOADS_RETIRED, and
TA64_INST_RETIRED appear deterministic

e POWERG — instructions:u deterministic, branches:u
has overcount

e SPARC Niagara T-1 — INSTR_CNT deterministic
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Full-sized Benchmarks

(SPEC CPU 2000)

Benchmark Pin Results Counter Results Difference
164.gzip.graphic 9,220,255,442+ /-0 9,220,318,816+/-1 63,374
171.swim 18,657,590,092+ /-0 18,657,604,499+ /-0 14,407
175.vpr.place 10,506,996,023+ /-0 10,507,367,334+ /-1 371,311
175.vpr.route 8,498,211,242+ /-0 8,498,625,210+ /-1 413,968
176.gcc.200 10,809,876,957+ /-0 10,810,247,099+/-14 370,142
177.mesa 35,256,814,647+ /-0 35,256,814,675+ /-0 28
178.galgel 25,736,467,292+ /-0 25,736,468,525+ /-0 1,233
179.art.110 3,467,916,650+ /-0 3,467,916,650+ /-0 0
179.art.470 3,792,351,365+/-0 3,792,351,365+ /-0 0
186.crafty 14,715,329,050+ /-0 14,715,329,550+ /-0 500
187.facerec 17,108,726,507+ /-0 17,175,891,130+/-6 67,164,623
188.ammp 31,435,756,072+ /-0 31,435,756,072+ /-0 0
197.parser 32,254,247,249+ /-0 32,254,090,688+ /-0 -156,561
200.sixtrack 24,831,293,048+ /-0 24,831,447,915+ /-1 154,867
252.eon.cook 9,168,538,965+/-10 9,168,538,925+ /-21 -40
253.perlbmk.957 853,729,475+ /-0 853,824,516+ /-0 05,041
253.perlbmk.diffmail 5,192,919,5647+ /-2 5,192,873,218+ /-0 -46,329
253.perlbmk.makerand 188,774,998+ /-2 188,774,884+ /-1 -114
253.perlbmk.perfect 3,498,063,997+ /-2 3,498,435,094+ /-0 371,097
254 gap 25,380,689,015+ /-0 25,380,688,751+ /-0 -264
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Future Work

e Test more extensively on other architectures
e Auto-generate tests
e Work with chip vendors

e Look at more events and options (Fixed Counter 2)
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Questions?

vincent.weaverOmaine.edu

All code and data is available

http://www.eece.maine.edu/~vweaver/projects/deterministic

git://github.com/deater/deterministic.git
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